Diffusion Prevalence

The Diffusion Prevalence plot compares the delta-trends of all the statuses allowed by the diffusive model tested.

Each trend line describes the delta of the number of nodes for a given status iteration after iteration.

class ndlib.viz.mpl.DiffusionPrevalence.DiffusionPrevalence(model, trends)
DiffusionPrevalence.__init__(model, trends)
  • model – The model object
  • trends – The computed simulation iterations
DiffusionPrevalence.plot(filename, percentile)

Generates the plot

  • filename – Output filename
  • percentile – The percentile for the trend variance area
  • statuses – List of statuses to plot. If not specified all statuses trends will be shown.

Below is shown an example of Diffusion Prevalence description and visualization for the SIR model.

import networkx as nx
import ndlib.models.ModelConfig as mc
import ndlib.models.epidemics as ep
from ndlib.viz.mpl.DiffusionPrevalence import DiffusionPrevalence

# Network topology
g = nx.erdos_renyi_graph(1000, 0.1)

# Model selection
model = ep.SIRModel(g)

# Model Configuration
cfg = mc.Configuration()
cfg.add_model_parameter('beta', 0.001)
cfg.add_model_parameter('gamma', 0.01)
cfg.add_model_parameter("fraction_infected", 0.01)

# Simulation execution
iterations = model.iteration_bunch(200)
trends = model.build_trends(iterations)

# Visualization
viz = DiffusionPrevalence(model, trends)
SIR Diffusion Prevalence Example

SIR Diffusion Prevalence Example.