SIS

The SIS model was introduced in 1927 by Kermack [1].

In this model, during the course of an epidemics, a node is allowed to change its status from Susceptible (S) to Infected (I).

The model is instantiated on a graph having a non-empty set of infected nodes.

SIS assumes that if, during a generic iteration, a susceptible node comes into contact with an infected one, it becomes infected with probability beta, than it can be switch again to susceptible with probability lambda (the only transition allowed are S→I→S).

Statuses

During the simulation a node can experience the following statuses:

Name Code
Susceptible 0
Infected 1

Parameters

Name Type Value Type Default Mandatory Description
beta Model float in [0, 1]   True Infection probability
lambda Model float in [0, 1]   True Recovery probability

The initial infection status can be defined via:

  • fraction_infected: Model Parameter, float in [0, 1]
  • Infected: Status Parameter, set of nodes

The two options are mutually exclusive and the latter takes precedence over the former.

Example

In the code below is shown an example of instantiation and execution of an SIS simulation on a random graph: we set the initial set of infected nodes as 5% of the overall population, a probability of infection of 1%, and a probability of recovery of 0.5%.

import networkx as nx
import ndlib.models.ModelConfig as mc
import ndlib.models.epidemics as ep

# Network topology
g = nx.erdos_renyi_graph(1000, 0.1)

# Model selection
model = ep.SISModel(g)

# Model Configuration
cfg = mc.Configuration()
cfg.add_model_parameter('beta', 0.01)
cfg.add_model_parameter('lambda', 0.005)
cfg.add_model_parameter("fraction_infected", 0.05)
model.set_initial_status(cfg)

# Simulation execution
iterations = model.iteration_bunch(200)
[1]
    1. Kermack and A. McKendrick, “A Contribution to the Mathematical Theory of Epidemics,” Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, vol. 115, no. 772, pp. 700–721, Aug. 1927