

NDlib - Network Diffusion Library

[image: _images/ndlib.svg]
 [https://badge.fury.io/py/ndlib.svg][image: _images/ndlib1.svg]
 [https://badge.fury.io/py/ndlib][image: _images/ndlib.png]
 [http://travis-ci.org/GiulioRossetti/ndlib][image: _images/badge.png]
 [https://coveralls.io/r/GiulioRossetti/ndlib?branch=master]NDlib is a Python software package that allows to describe, simulate, and study diffusion processes on complex networks.

	Date

	Python Versions

	Main Author

	GitHub

	pypl

	2018-01-25

	2.7.x/3.x

	Giulio Rossetti [http://www.about.giuliorossetti.net]

	Source [https://github.com/GiulioRossetti/ndlib]

	Distribution [https://pypi.python.org/pypi/ndlib]

 Overview

Overview

NDlib is a Python language software package for the describing, simulate, and study diffusion processes on complex netowrks.

Who uses NDlib?

The potential audience for NDlib includes mathematicians, physicists, biologists, computer scientists, and social scientists.

Goals

NDlib is built upon the NetworkX [https://networkx.github.io] python library and is intended to provide:

	tools for the study diffusion dynamics on social, biological, and infrastructure networks,

	a standard programming interface and diffusion models implementation that is suitable for many applications,

	a rapid development environment for collaborative, multidisciplinary, projects.

The Python NDlib library

NDlib is a powerful Python package that allows simple and flexible simulations of networks diffusion processes.

Most importantly, NDlib, as well as the Python programming language, is free, well-supported, and a joy to use.

Free software

NDlib is free software; you can redistribute it and/or modify it under the terms of the BSD License.
We welcome contributions from the community.

EU H2020

NDlib is a result of two European H2020 projects:

	CIMPLEX [https://www.cimplex-project.eu] “Bringing CItizens, Models and Data together in Participatory, Interactive SociaL EXploratories”: under the funding scheme “FETPROACT-1-2014: Global Systems Science (GSS)”, grant agreement #641191.

	SoBigData [http://www.sobigdata.eu] “Social Mining & Big Data Ecosystem”: under the scheme “INFRAIA-1-2014-2015: Research Infrastructures”, grant agreement #654024.

 Download

Download

Software

Source and binary releases: https://pypi.python.org/pypi/ndlib

Github (latest development): https://github.com/GiulioRossetti/ndlib

Github NDlib-REST: https://github.com/GiulioRossetti/ndlib-rest

Github NDlib-Viz: https://github.com/rinziv/NDLib-Viz

Documentation

 Installing NDlib

Installing NDlib

Before installing NDlib, you need to have setuptools installed.

Quick install

Get NDlib from the Python Package Index at pypl [https://pypi.python.org/pypi/ndlib/].

or install it with

pip install ndlib

and an attempt will be made to find and install an appropriate version that matches your operating system and Python version.

You can install the development version with

pip install git://github.com/GiulioRossetti/ndlib.git

Installing from source

You can install from source by downloading a source archive file (tar.gz or zip) or by checking out the source files from the GitHub source code repository.

NDlib is a pure Python package; you don’t need a compiler to build or install it.

Source archive file

Download the source (tar.gz or zip file) from pypl [https://pypi.python.org/pypi/ndlib/] or get the latest development version from GitHub [https://github.com/GiulioRossetti/ndlib/]

Unpack and change directory to the source directory (it should have the files README.txt and setup.py).

Run python setup.py install to build and install

GitHub

Clone the NDlib repostitory (see GitHub [https://github.com/GiulioRossetti/ndlib/] for options)

git clone https://github.com/GiulioRossetti/ndlib.git

Change directory to ndlib

Run python setup.py install to build and install

If you don’t have permission to install software on your system, you can install into another directory using the –user, –prefix, or –home flags to setup.py.

For example

python setup.py install --prefix=/home/username/python

or

python setup.py install --home=~

or

python setup.py install --user

If you didn’t install in the standard Python site-packages directory you will need to set your PYTHONPATH variable to the alternate location. See http://docs.python.org/2/install/index.html#search-path for further details.

Requirements

Python

To use NDlib you need Python 2.7, 3.2 or later.

The easiest way to get Python and most optional packages is to install the Enthought Python distribution “Canopy” or using Anaconda.

There are several other distributions that contain the key packages you need for scientific computing.

Required packages

The following are packages required by NDlib.

NetworkX

Provides the graph representation used by the diffusion models implemented in NDlib.

Download: http://networkx.github.io/download.html

Optional packages

The following are optional packages that NDlib can use to provide additional functions.

Bokeh

Provides support to the visualization facilities offered by NDlib.

Download: http://bokeh.pydata.org/en/latest/

Other packages

These are extra packages you may consider using with NDlib

IPython, interactive Python shell, http://ipython.scipy.org/

 Tutorial

Tutorial

NDlib is built upon networkx and is designed to configure, simulate and visualize diffusion experiments.

Installation

In order to install the latest version of the library (with visualization facilities) use

pip install ndlib

Chose a Diffusion model

Let’s start importing the required libraries

import networkx as nx
import ndlib.models.epidemics.SIRModel as sir

Once imported the selected model, SIR, and the networkx library we can initialize the simulation:

Network Definition
g = nx.erdos_renyi_graph(1000, 0.1)

Model Selection
model = sir.SIRModel(g)

Configure the simulation

Each model has its own parameters: in order to completely instantiate the simulation we need to specify them using a Configuration object:

import ndlib.models.ModelConfig as mc

Model Configuration
config = mc.Configuration()
config.add_model_parameter('beta', 0.001)
config.add_model_parameter('gamma', 0.01)
config.add_model_parameter("percentage_infected", 0.05)
model.set_initial_status(config)

The model configuration allows to specify model parameters (as in this scenario) as well as nodes’ and edges’ ones (e.g. individual thresholds).

Moreover it allows to specify the initial percentage of infected nodes using the percentage_infected model parameter.

It is also possible to explicitly specify an initial set of infected nodes: see ModelConfig for the complete set of use cases.

Execute the simulation

In order to execute the simulation one, or more, iterations must be required using the model.iteration() and/or model.iteration_bunch(n_iterations) methods.

Simulation
iterations = model.iteration_bunch(200)
trends = model.build_trends(iterations)

Visualize the results

At the end of the simulation the diffusion trend can be visualized as follows (for matplotlib change ndlib.viz.bokeh in ndlib.viz.mpl)

from bokeh.io import output_notebook, show
from ndlib.viz.bokeh.DiffusionTrend import DiffusionTrend

viz = DiffusionTrend(model, trends)
p = viz.plot(width=400, height=400)
show(p)

Furthermore, a prevalence plot is also made available.

The prevalence plot captures the variation (delta) of nodes for each status in consecutive iterations.

from ndlib.viz.bokeh.DiffusionPrevalence import DiffusionPrevalence

viz2 = DiffusionPrevalence(model, trends)
p2 = viz2.plot(width=400, height=400)
show(p2)

Multiple plots can be combined in a multiplot to provide a complete description of the diffusive process

from ndlib.viz.bokeh.MultiPlot import MultiPlot
vm = MultiPlot()
vm.add_plot(p)
vm.add_plot(p2)
m = vm.plot()
show(m)

Multiplots - implemented only for the bokeh provider - are also useful to compare different diffusion models applied to the same graph (as well as a same model instantiated with different parameters)

import ndlib.models.epidemics.SISModel as sis
import ndlib.models.epidemics.SIModel as si
import ndlib.models.epidemics.ThresholdModel as th

vm = MultiPlot()
vm.add_plot(p)

SIS
sis_model = sis.SISModel(g)
config = mc.Configuration()
config.add_model_parameter('beta', 0.001)
config.add_model_parameter('lambda', 0.01)
config.add_model_parameter("percentage_infected", 0.05)
sis_model.set_initial_status(config)
iterations = sis_model.iteration_bunch(200)
trends = model.build_trends(iterations)

viz = DiffusionTrend(sis_model, trends)
p3 = viz.plot(width=400, height=400)
vm.add_plot(p3)

SI
si_model = si.SIModel(g)
config = mc.Configuration()
config.add_model_parameter('beta', 0.001)
config.add_model_parameter("percentage_infected", 0.05)
si_model.set_initial_status(config)
iterations = si_model.iteration_bunch(200)
trends = model.build_trends(iterations)

viz = DiffusionTrend(si_model, trends)
p4 = viz.plot(width=400, height=400)
vm.add_plot(p4)

Threshold
th_model = th.ThresholdModel(g)
config = mc.Configuration()

Set individual node threshold
threshold = 0.40
for n in g.nodes():
 config.add_node_configuration("threshold", n, threshold)

config.add_model_parameter("percentage_infected", 0.30)
th_model.set_initial_status(config)
iterations = th_model.iteration_bunch(60)
trends = model.build_trends(iterations)

viz = DiffusionTrend(th_model, trends)
p5 = viz.plot(width=400, height=400)
vm.add_plot(p5)

m = vm.plot()
show(m)

 Network Diffusion Library Reference

Network Diffusion Library Reference

In this section are introduced the components that constitute NDlib, namely

	The implemented diffusion models (organized in Epidemics and Opinion Dynamics)

	The methodology adopted to configure a general simulation

	The visualization facilities embedded in the library to explore the results

Advanced topics (Custom model definition, Network Diffusion Query language (NDQL), Experiment Server and Visual Framework) are reported in separate sections.

Diffusion Models

The analysis of diffusive phenomena that unfold on top of complex networks is a task able to attract growing interests from multiple fields of research.

In order to provide a succinct framing of such complex and extensively studied problem it is possible to split the related literature into two broad, related, sub-classes: Epidemics and Opinion Dynamics.

Moreover, NDlib also supports the simulation of diffusive processes on top of evolving network topologies: the Dynamic Network Models section the ones NDlib implements.

Epidemics

When we talk about epidemics, we think about contagious diseases caused by biological pathogens, like influenza, measles, chickenpox and sexually transmitted viruses that spread from person to person.
However, other phenomena can be linked to the concept of epidemic: think about the spread of computer virus 1 where the agent is a malware that can transmit a copy of itself from computer to computer, or the spread of mobile phone virus 2 3, or the diffusion of knowledge, innovations, products in an online social network 4 - the so-called “social contagion”, where people are making decision to adopt a new idea or innovation.

Several elements determine the patterns by which epidemics spread through groups of people: the properties carried by the pathogen (its contagiousness, the length of its infectious period and its severity), the structure of the network as well as the mobility patterns of the people involved. Although often treated as similar processes, diffusion of information and epidemic spreading can be easily distinguished by a single feature: the degree of activeness of the subjects they affect.

Indeed, the spreading process of a virus does not require an active participation of the people that catch it (i.e., even though some behaviors acts as contagion facilitators – scarce hygiene, moist and crowded environment – we can assume that no one chooses to get the flu on purpose); conversely, we can argue that the diffusion of an idea, an innovation, or a trend strictly depend not only by the social pressure but also by individual choices.

In NDlib are implemented the following Epidemic models:

	SI

	SIS

	SIR

	SEIR

	SEIS

	SWIR

	Threshold

	Generalised Threshold

	Kertesz Threshold

	Independent Cascades

	Profile

	Profile Threshold

Opinion Dinamycs

A different field related with modelling social behaviour is that of opinion dynamics.

Recent years have witnessed the introduction of a wide range of models that attempt to explain how opinions form in a population 5, taking into account various social theories (e.g. bounded confidence 6 or social impact 7).

These models have a lot in common with those seen in epidemics and spreading.
In general, individuals are modelled as agents with a state and connected by a social network.

The social links can be represented by a complete graph (mean field models) or by more realistic complex networks, similar to epidemics and spreading.

The state is typically represented by variables, that can be discrete (similar to the case of spreading), but also continuous, representing for instance a probability to choose one option or another 8 . The state of individuals changes in time, based on a set of update rules, mainly through interaction with the neighbours.

While in many spreading and epidemics models this change is irreversible (susceptible to infected), in opinion dynamics the state can oscillate freely between the possible values, simulating thus how opinions change in reality.

A different important aspect in opinion dynamics is external information, which can be interpreted as the effect of mass media.
In general external information is represented as a static individual with whom all others can interact, again present also in spreading models.
Hence, it is clear that the two model categories have enough in common to be implemented under a common framework, which is why we introduced both in our framework.

In NDlib are implemented the following Opinion Dynamics models:

	Voter

	Q-Voter

	Majority Rule

	Sznajd

	Cognitive Opinion Dynamics

Dynamic Network Models

Network topology may evolve as time goes by.

In order to automatically leverage network dynamics NDlib enables the definition of diffusion models that work on Snapshot Graphs as well as on Interaction Networks.

In particular NDlib implements dynamic network versions of the following models:

	SI

	SIS

	SIR

	Kertesz Threshold

	Profile

	Threshold

Model Configuration

NDlib adopts a peculiar approach to specify the configuration of expetiments.
It employs a centralyzed system that take care of:

	Describe a common syntax for model configuration;

	Provide an interface to set the initial conditions of an experiment (nodes/edges properties, initial nodes statuses)

	ModelConfig

NDlib Utils

The ndlib.utils module contains facilities that extend the simulation framework (i.e., automated multiple executions).

	Model Multiple Executions

Visualization

In order to provide an easy proxy to study diffusion phenomena and compare different configurations as well as models NDlib offers built-in visualizzation facilities.

In particular, the following plots are made available:

Pyplot Viz

Classic Visualizations

	Diffusion Trend

	Diffusion Prevalence

Model Comparison Visualizations

	Diffusion Trend Comparison

	Diffusion Prevalence Comparison

Bokeh Viz

Classic Visualizations

	Diffusion Trend

	Diffusion Prevalence

Model Comparison Visualizations

	Multi Plot

	1

	
	Szor, “Fighting computer virus attacks.” USENIX, 2004.

	2

	
	Havlin, “Phone infections,” Science, 2009.

	3

	P.Wang,M.C.Gonzalez,R.Menezes,andA.L.Baraba ́si,“Understanding the spread of malicious mobile-phone programs and their damage potential,” International Journal of Information Security, 2013.

	4

	
	
	Burt, “Social Contagion and Innovation: Cohesion Versus Structural Equivalence,” American Journal of Sociology, 1987.

	5

	
	Sırbu, V. Loreto, V. D. Servedio, and F. Tria, “Opinion dynamics: Models, extensions and external effects,” in Participatory Sensing, Opinions and Collective Awareness. Springer International Publishing, 2017, pp. 363–401.

	6

	
	Deffuant, D. Neau, F. Amblard, and G. Weisbuch, “Mixing beliefs among interacting agents,” Advances in Complex Systems, vol. 3, no. 4, pp. 87–98, 2000.

	7

	
	Sznajd-Weron and J. Sznajd, “Opinion evolution in closed community,” International Journal of Modern Physics C, vol. 11, pp. 1157–1165, 2001.

	8

	
	Sırbu, V. Loreto, V. D. Servedio, and F. Tria, “Opinion dynamics with disagreement and modulated information,” Journal of Statistical Physics, pp. 1–20, 2013.

 SI

SI

The SI model was introduced in 1927 by Kermack 1.

In this model, during the course of an epidemics, a node is allowed to change its status only from Susceptible (S) to Infected (I).

The model is instantiated on a graph having a non-empty set of infected nodes.

SI assumes that if, during a generic iteration, a susceptible node comes into contact with an infected one, it becomes infected with probability β: once a node becomes infected, it stays infected (the only transition allowed is S→I).

Statuses

During the simulation a node can experience the following statuses:

	Name

	Code

	Susceptible

	0

	Infected

	1

Parameters

	Name

	Type

	Value Type

	Default

	Mandatory

	Description

	beta

	Model

	float in [0, 1]

	
	True

	Infection probability

The initial infection status can be defined via:

	percentage_infected: Model Parameter, float in [0, 1]

	Infected: Status Parameter, set of nodes

The two options are mutually exclusive and the latter takes precedence over the former.

Methods

The following class methods are made available to configure, describe and execute the simulation:

Configure

	
class ndlib.models.epidemics.SIModel.SIModel(graph)

	Model Parameters to be specified via ModelConfig

	Parameters

	beta – The infection rate (float value in [0,1])

	
SIModel.__init__(graph)

	Model Constructor

	Parameters

	graph – A networkx graph object

	
SIModel.set_initial_status(self, configuration)

	Set the initial model configuration

	Parameters

	configuration – a `ndlib.models.ModelConfig.Configuration` object

	
SIModel.reset(self)

	Reset the simulation setting the actual status to the initial configuration.

Describe

	
SIModel.get_info(self)

	Describes the current model parameters (nodes, edges, status)

	Returns

	a dictionary containing for each parameter class the values specified during model configuration

	
SIModel.get_status_map(self)

	Specify the statuses allowed by the model and their numeric code

	Returns

	a dictionary (status->code)

Execute Simulation

	
SIModel.iteration(self)

	Execute a single model iteration

	Returns

	Iteration_id, Incremental node status (dictionary node->status)

	
SIModel.iteration_bunch(self, bunch_size)

	Execute a bunch of model iterations

	Parameters

	
	bunch_size – the number of iterations to execute

	node_status – if the incremental node status has to be returned.

	Returns

	a list containing for each iteration a dictionary {“iteration”: iteration_id, “status”: dictionary_node_to_status}

Example

In the code below is shown an example of instantiation and execution of an SI simulation on a random graph: we set the initial set of infected nodes as 5% of the overall population and a probability of infection of 1%.

import networkx as nx
import ndlib.models.ModelConfig as mc
import ndlib.models.epidemics.SIModel as si

Network topology
g = nx.erdos_renyi_graph(1000, 0.1)

Model selection
model = si.SIModel(g)

Model Configuration
cfg = mc.Configuration()
cfg.add_model_parameter('beta', 0.01)
cfg.add_model_parameter("percentage_infected", 0.05)
model.set_initial_status(cfg)

Simulation execution
iterations = model.iteration_bunch(200)

	1

	
	
	Kermack and A. McKendrick, “A Contribution to the Mathematical Theory of Epidemics,” Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, vol. 115, no. 772, pp. 700–721, Aug. 1927.

 SIS

SIS

The SIS model was introduced in 1927 by Kermack 1.

In this model, during the course of an epidemics, a node is allowed to change its status from Susceptible (S) to Infected (I).

The model is instantiated on a graph having a non-empty set of infected nodes.

SIS assumes that if, during a generic iteration, a susceptible node comes into contact with an infected one, it becomes infected with probability beta, than it can be switch again to susceptible with probability lambda (the only transition allowed are S→I→S).

Statuses

During the simulation a node can experience the following statuses:

	Name

	Code

	Susceptible

	0

	Infected

	1

Parameters

	Name

	Type

	Value Type

	Default

	Mandatory

	Description

	beta

	Model

	float in [0, 1]

	
	True

	Infection probability

	lambda

	Model

	float in [0, 1]

	
	True

	Recovery probability

The initial infection status can be defined via:

	percentage_infected: Model Parameter, float in [0, 1]

	Infected: Status Parameter, set of nodes

The two options are mutually exclusive and the latter takes precedence over the former.

Methods

The following class methods are made available to configure, describe and execute the simulation:

Configure

	
class ndlib.models.epidemics.SISModel.SISModel(graph)

	Model Parameters to be specified via ModelConfig

	Parameters

	
	beta – The infection rate (float value in [0,1])

	lambda – The recovery rate (float value in [0,1])

	
SISModel.__init__(graph)

	Model Constructor

	Parameters

	graph – A networkx graph object

	
SISModel.set_initial_status(self, configuration)

	Set the initial model configuration

	Parameters

	configuration – a `ndlib.models.ModelConfig.Configuration` object

	
SISModel.reset(self)

	Reset the simulation setting the actual status to the initial configuration.

Describe

	
SISModel.get_info(self)

	Describes the current model parameters (nodes, edges, status)

	Returns

	a dictionary containing for each parameter class the values specified during model configuration

	
SISModel.get_status_map(self)

	Specify the statuses allowed by the model and their numeric code

	Returns

	a dictionary (status->code)

Execute Simulation

	
SISModel.iteration(self)

	Execute a single model iteration

	Returns

	Iteration_id, Incremental node status (dictionary node->status)

	
SISModel.iteration_bunch(self, bunch_size)

	Execute a bunch of model iterations

	Parameters

	
	bunch_size – the number of iterations to execute

	node_status – if the incremental node status has to be returned.

	Returns

	a list containing for each iteration a dictionary {“iteration”: iteration_id, “status”: dictionary_node_to_status}

Example

In the code below is shown an example of instantiation and execution of an SIS simulation on a random graph: we set the initial set of infected nodes as 5% of the overall population, a probability of infection of 1%, and a probability of recovery of 0.5%.

import networkx as nx
import ndlib.models.ModelConfig as mc
import ndlib.models.epidemics.SISModel as sis

Network topology
g = nx.erdos_renyi_graph(1000, 0.1)

Model selection
model = sis.SISModel(g)

Model Configuration
cfg = mc.Configuration()
cfg.add_model_parameter('beta', 0.01)
cfg.add_model_parameter('lambda', 0.005)
cfg.add_model_parameter("percentage_infected", 0.05)
model.set_initial_status(cfg)

Simulation execution
iterations = model.iteration_bunch(200)

	1

	
	
	Kermack and A. McKendrick, “A Contribution to the Mathematical Theory of Epidemics,” Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, vol. 115, no. 772, pp. 700–721, Aug. 1927

 SIR

SIR

The SIR model was introduced in 1927 by Kermack 1.

In this model, during the course of an epidemics, a node is allowed to change its status from Susceptible (S) to Infected (I), then to Removed (R).

The model is instantiated on a graph having a non-empty set of infected nodes.

SIR assumes that if, during a generic iteration, a susceptible node comes into contact with an infected one, it becomes infected with probability beta, than it can be switch to removed with probability gamma (the only transition allowed are S→I→R).

Statuses

During the simulation a node can experience the following statuses:

	Name

	Code

	Susceptible

	0

	Infected

	1

	Removed

	2

Parameters

	Name

	Type

	Value Type

	Default

	Mandatory

	Description

	beta

	Model

	float in [0, 1]

	
	True

	Infection probability

	gamma

	Model

	float in [0, 1]

	
	True

	Removal probability

The initial infection status can be defined via:

	percentage_infected: Model Parameter, float in [0, 1]

	Infected: Status Parameter, set of nodes

The two options are mutually exclusive and the latter takes precedence over the former.

Methods

The following class methods are made available to configure, describe and execute the simulation:

Configure

	
class ndlib.models.epidemics.SIRModel.SIRModel(graph)

	Model Parameters to be specified via ModelConfig

	Parameters

	
	beta – The infection rate (float value in [0,1])

	gamma – The recovery rate (float value in [0,1])

	
SIRModel.__init__(graph)

	Model Constructor

	Parameters

	graph – A networkx graph object

	
SIRModel.set_initial_status(self, configuration)

	Set the initial model configuration

	Parameters

	configuration – a `ndlib.models.ModelConfig.Configuration` object

	
SIRModel.reset(self)

	Reset the simulation setting the actual status to the initial configuration.

Describe

	
SIRModel.get_info(self)

	Describes the current model parameters (nodes, edges, status)

	Returns

	a dictionary containing for each parameter class the values specified during model configuration

	
SIRModel.get_status_map(self)

	Specify the statuses allowed by the model and their numeric code

	Returns

	a dictionary (status->code)

Execute Simulation

	
SIRModel.iteration(self)

	Execute a single model iteration

	Returns

	Iteration_id, Incremental node status (dictionary node->status)

	
SIRModel.iteration_bunch(self, bunch_size)

	Execute a bunch of model iterations

	Parameters

	
	bunch_size – the number of iterations to execute

	node_status – if the incremental node status has to be returned.

	Returns

	a list containing for each iteration a dictionary {“iteration”: iteration_id, “status”: dictionary_node_to_status}

Example

In the code below is shown an example of instantiation and execution of an SIR simulation on a random graph: we set the initial set of infected nodes as 5% of the overall population, a probability of infection of 1%, and a removal probability of 0.5%.

import networkx as nx
import ndlib.models.ModelConfig as mc
import ndlib.models.epidemics.SIRModel as sir

Network topology
g = nx.erdos_renyi_graph(1000, 0.1)

Model selection
model = sir.SIRModel(g)

Model Configuration
cfg = mc.Configuration()
cfg.add_model_parameter('beta', 0.01)
cfg.add_model_parameter('gamma', 0.005)
cfg.add_model_parameter("percentage_infected", 0.05)
model.set_initial_status(cfg)

Simulation execution
iterations = model.iteration_bunch(200)

	1

	
	
	Kermack and A. McKendrick, “A Contribution to the Mathematical Theory of Epidemics,” Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, vol. 115, no. 772, pp. 700–721, Aug. 1927

 SEIR

SEIR

In the SEIR model 1, during the course of an epidemics, a node is allowed to change its status from Susceptible (S) to Exposed (E) to Infected (I), then to Removed (R).

The model is instantiated on a graph having a non-empty set of infected nodes.

SEIR assumes that if, during a generic iteration, a susceptible node comes into contact with an infected one, it becomes infected after an exposition period with probability beta, than it can switch to removed with probability gamma (the only transition allowed are S→E→I→R).

Statuses

During the simulation a node can experience the following statuses:

	Name

	Code

	Susceptible

	0

	Infected

	1

	Exposed

	2

	Removed

	3

Parameters

	Name

	Type

	Value Type

	Default

	Mandatory

	Description

	beta

	Model

	float in [0, 1]

	
	True

	Infection probability

	gamma

	Model

	float in [0, 1]

	
	True

	Removal probability

	alpha

	Model

	float in [0, 1]

	
	True

	Incubation period

The initial infection status can be defined via:

	percentage_infected: Model Parameter, float in [0, 1]

	Infected: Status Parameter, set of nodes

The two options are mutually exclusive and the latter takes precedence over the former.

Methods

The following class methods are made available to configure, describe and execute the simulation:

Configure

	
class ndlib.models.epidemics.SEIRModel.SEIRModel(graph)

	

	
SEIRModel.__init__(graph)

	

	
SEIRModel.set_initial_status(self, configuration)

	Set the initial model configuration

	Parameters

	configuration – a `ndlib.models.ModelConfig.Configuration` object

	
SEIRModel.reset(self)

	Reset the simulation setting the actual status to the initial configuration.

Describe

	
SEIRModel.get_info(self)

	Describes the current model parameters (nodes, edges, status)

	Returns

	a dictionary containing for each parameter class the values specified during model configuration

	
SEIRModel.get_status_map(self)

	Specify the statuses allowed by the model and their numeric code

	Returns

	a dictionary (status->code)

Execute Simulation

	
SEIRModel.iteration(self)

	

	
SEIRModel.iteration_bunch(self, bunch_size)

	Execute a bunch of model iterations

	Parameters

	
	bunch_size – the number of iterations to execute

	node_status – if the incremental node status has to be returned.

	Returns

	a list containing for each iteration a dictionary {“iteration”: iteration_id, “status”: dictionary_node_to_status}

Example

In the code below is shown an example of instantiation and execution of an SEIR simulation on a random graph: we set the initial set of infected nodes as % of the overall population, a probability of infection of 1%, a removal probability of 0.5% and an incubation period of 5% (e.g. 20 iterations).

import networkx as nx
import ndlib.models.ModelConfig as mc
import ndlib.models.epidemics.SEIRModel as seir

Network topology
g = nx.erdos_renyi_graph(1000, 0.1)

Model selection
model = seir.SEIRModel(g)

Model Configuration
cfg = mc.Configuration()
cfg.add_model_parameter('beta', 0.01)
cfg.add_model_parameter('gamma', 0.005)
cfg.add_model_parameter('alpha', 0.05)
cfg.add_model_parameter("percentage_infected", 0.05)
model.set_initial_status(cfg)

Simulation execution
iterations = model.iteration_bunch(200)

	1

	J.L. Aron and I.B. Schwartz. Seasonality and period-doubling bifurcations in an epidemic model. Journal Theoretical Biology, 110:665-679, 1984

 SEIS

SEIS

In the SEIS model, during the course of an epidemics, a node is allowed to change its status from Susceptible (S) to Exposed (E) to Infected (I), then again to Susceptible (S).

The model is instantiated on a graph having a non-empty set of infected nodes.

SEIS assumes that if, during a generic iteration, a susceptible node comes into contact with an infected one, it becomes infected after an exposition period with probability beta, than it can switch back to susceptible with probability lambda (the only transition allowed are S→E→I→S).

Statuses

During the simulation a node can experience the following statuses:

	Name

	Code

	Susceptible

	0

	Infected

	1

	Exposed

	2

Parameters

	Name

	Type

	Value Type

	Default

	Mandatory

	Description

	beta

	Model

	float in [0, 1]

	
	True

	Infection probability

	lambda

	Model

	float in [0, 1]

	
	True

	Removal probability

	alpha

	Model

	float in [0, 1]

	
	True

	Incubation period

The initial infection status can be defined via:

	percentage_infected: Model Parameter, float in [0, 1]

	Infected: Status Parameter, set of nodes

The two options are mutually exclusive and the latter takes precedence over the former.

Methods

The following class methods are made available to configure, describe and execute the simulation:

Configure

	
class ndlib.models.epidemics.SEISModel.SEISModel(graph)

	Model Parameters to be specified via ModelConfig

	Parameters

	
	beta – The infection rate (float value in [0,1])

	lambda – The recovery rate (float value in [0,1])

	
SEISModel.__init__(graph)

	Model Constructor

	Parameters

	graph – A networkx graph object

	
SEISModel.set_initial_status(self, configuration)

	Set the initial model configuration

	Parameters

	configuration – a `ndlib.models.ModelConfig.Configuration` object

	
SEISModel.reset(self)

	Reset the simulation setting the actual status to the initial configuration.

Describe

	
SEISModel.get_info(self)

	Describes the current model parameters (nodes, edges, status)

	Returns

	a dictionary containing for each parameter class the values specified during model configuration

	
SEISModel.get_status_map(self)

	Specify the statuses allowed by the model and their numeric code

	Returns

	a dictionary (status->code)

Execute Simulation

	
SEISModel.iteration(self)

	Execute a single model iteration

	Returns

	Iteration_id, Incremental node status (dictionary node->status)

	
SEISModel.iteration_bunch(self, bunch_size)

	Execute a bunch of model iterations

	Parameters

	
	bunch_size – the number of iterations to execute

	node_status – if the incremental node status has to be returned.

	Returns

	a list containing for each iteration a dictionary {“iteration”: iteration_id, “status”: dictionary_node_to_status}

Example

In the code below is shown an example of instantiation and execution of an SEIS simulation on a random graph:
we set the initial set of infected nodes as 5% of the overall population, a probability of infection of 1%, a removal probability of 0.5% and an incubation period of 5% (e.g. 20 iterations).

import networkx as nx
import ndlib.models.ModelConfig as mc
import ndlib.models.epidemics.SEISModel as seis

Network topology
g = nx.erdos_renyi_graph(1000, 0.1)

Model selection
model = seis.SEISModel(g)

Model Configuration
cfg = mc.Configuration()
cfg.add_model_parameter('beta', 0.01)
cfg.add_model_parameter('lambda', 0.005)
cfg.add_model_parameter('alpha', 0.05)
cfg.add_model_parameter("percentage_infected", 0.05)
model.set_initial_status(cfg)

Simulation execution
iterations = model.iteration_bunch(200)

 SWIR

SWIR

The SWIR model was introduced in 2017 by Lee et al. 1.

In this model, during the epidemics, a node is allowed to change its status from Susceptible (S) to Weakened (W) or Infected (I), then to Removed (R).

The model is instantiated on a graph having a non-empty set of infected nodes.

At time t a node in the state I is selected randomly and the states of all neighbors are checked one by one. If the state of a neighbor is S then this state changes either i) to I with probability kappa or ii) to W with probability mu. If the state of a neighbor is W then the state W changes to I with probability nu. We repeat the above process for all nodes in state I and then changes to R for each associated node.

Statuses

During the simulation a node can experience the following statuses:

	Name

	Code

	Susceptible

	0

	Infected

	1

	Weakened

	2

	Removed

	3

Parameters

	Name

	Type

	Value Type

	Default

	Mandatory

	Description

	kappa

	Model

	float in [0, 1]

	
	True

	

	mu

	Model

	float in [0, 1]

	
	True

	

	nu

	Model

	float in [0, 1]

	
	True

	

The initial infection status can be defined via:

	percentage_infected: Model Parameter, float in [0, 1]

	Infected: Status Parameter, set of nodes

The two options are mutually exclusive and the latter takes precedence over the former.

Methods

The following class methods are made available to configure, describe and execute the simulation:

Configure

	
class ndlib.models.epidemics.SWIRModel.SWIRModel(graph)

	

	
SWIRModel.__init__(graph)

	

	
SWIRModel.set_initial_status(self, configuration)

	Set the initial model configuration

	Parameters

	configuration – a `ndlib.models.ModelConfig.Configuration` object

	
SWIRModel.reset(self)

	Reset the simulation setting the actual status to the initial configuration.

Describe

	
SWIRModel.get_info(self)

	Describes the current model parameters (nodes, edges, status)

	Returns

	a dictionary containing for each parameter class the values specified during model configuration

	
SWIRModel.get_status_map(self)

	Specify the statuses allowed by the model and their numeric code

	Returns

	a dictionary (status->code)

Execute Simulation

	
SWIRModel.iteration_bunch(self, bunch_size)

	Execute a bunch of model iterations

	Parameters

	
	bunch_size – the number of iterations to execute

	node_status – if the incremental node status has to be returned.

	Returns

	a list containing for each iteration a dictionary {“iteration”: iteration_id, “status”: dictionary_node_to_status}

Example

In the code below is shown an example of instantiation and execution of an SEIR simulation on a random graph: we set the initial set of infected nodes as % of the overall population, a probability of infection of 1%, a removal probability of 0.5% and an incubation period of 5% (e.g. 20 iterations).

import networkx as nx
import ndlib.models.ModelConfig as mc
import ndlib.models.epidemics.SWIRModel as swir

Network topology
g = nx.erdos_renyi_graph(1000, 0.1)

Model selection
model = swir.SWIRModel(g)

Model Configuration
cfg = mc.Configuration()
cfg.add_model_parameter('kappa', 0.01)
cfg.add_model_parameter('mu', 0.005)
cfg.add_model_parameter('nu', 0.05)
cfg.add_model_parameter("percentage_infected", 0.05)
model.set_initial_status(cfg)

Simulation execution
iterations = model.iteration_bunch(200)

	1

	
	Lee, W. Choi, J. Kertész, B. Kahng. “Universal mechanism for hybrid percolation transitions”. Scientific Reports, vol. 7(1), 5723, 2017.

 Threshold

Threshold

The Threshold model was introduced in 1978 by Granovetter 1.

In this model during an epidemics, a node has two distinct and mutually exclusive behavioral alternatives, e.g., the decision to do or not do something, to participate or not participate in a riot.

Node’s individual decision depends on the percentage of its neighbors have made the same choice, thus imposing a threshold.

The model works as follows:
- each node has its own threshold;
- during a generic iteration every node is observed: iff the percentage of its infected neighbors is grater than its threshold it becomes infected as well.

Statuses

During the simulation a node can experience the following statuses:

	Name

	Code

	Susceptible

	0

	Infected

	1

Parameters

	Name

	Type

	Value Type

	Default

	Mandatory

	Description

	threshold

	Node

	float in [0, 1]

	0.1

	False

	Individual threshold

The initial infection status can be defined via:

	percentage_infected: Model Parameter, float in [0, 1]

	Infected: Status Parameter, set of nodes

The two options are mutually exclusive and the latter takes precedence over the former.

Methods

The following class methods are made available to configure, describe and execute the simulation:

Configure

	
class ndlib.models.epidemics.ThresholdModel.ThresholdModel(graph)

	
Node Parameters to be specified via ModelConfig

	Parameters

	threshold – The node threshold. If not specified otherwise a value of 0.1 is assumed for all nodes.

	
ThresholdModel.__init__(graph)

	Model Constructor

	Parameters

	graph – A networkx graph object

	
ThresholdModel.set_initial_status(self, configuration)

	Set the initial model configuration

	Parameters

	configuration – a `ndlib.models.ModelConfig.Configuration` object

	
ThresholdModel.reset(self)

	Reset the simulation setting the actual status to the initial configuration.

Describe

	
ThresholdModel.get_info(self)

	Describes the current model parameters (nodes, edges, status)

	Returns

	a dictionary containing for each parameter class the values specified during model configuration

	
ThresholdModel.get_status_map(self)

	Specify the statuses allowed by the model and their numeric code

	Returns

	a dictionary (status->code)

Execute Simulation

	
ThresholdModel.iteration(self)

	Execute a single model iteration

	Returns

	Iteration_id, Incremental node status (dictionary node->status)

	
ThresholdModel.iteration_bunch(self, bunch_size)

	Execute a bunch of model iterations

	Parameters

	
	bunch_size – the number of iterations to execute

	node_status – if the incremental node status has to be returned.

	Returns

	a list containing for each iteration a dictionary {“iteration”: iteration_id, “status”: dictionary_node_to_status}

Example

In the code below is shown an example of instantiation and execution of a Threshold model simulation on a random graph: we set the initial set of infected nodes as 1% of the overall population, and assign a threshold of 0.25 to all the nodes.

import networkx as nx
import ndlib.models.ModelConfig as mc
import ndlib.models.epidemics.ThresholdModel as th

Network topology
g = nx.erdos_renyi_graph(1000, 0.1)

Model selection
model = th.ThresholdModel(g)

Model Configuration
config = mc.Configuration()
config.add_model_parameter('percentage_infected', 0.1)

Setting node parameters
threshold = 0.25
for i in g.nodes():
 config.add_node_configuration("threshold", i, threshold)

model.set_initial_status(config)

Simulation execution
iterations = model.iteration_bunch(200)

	1

	
	Granovetter, “Threshold models of collective behavior,” The American Journal of Sociology, vol. 83, no. 6, pp. 1420–1443, 1978.

 Generalised Threshold

Generalised Threshold

The Generalised Threshold model was introduced in 2017 by Török and Kertesz 1.

In this model, during an epidemics, a node is allowed to change its status from Susceptible to Infected.

The model is instantiated on a graph having a non-empty set of infected nodes.

The model is defined as follows:

	At time t nodes become Infected with rate mu t/tau

	Nodes for which the ratio of the active friends dropped below the threshold are moved to the Infected queue

	Nodes in the Infected queue become infected with rate tau. If this happens check all its friends for threshold

Statuses

During the simulation a node can experience the following statuses:

	Name

	Code

	Susceptible

	0

	Infected

	1

Parameters

The initial infection status can be defined via:

	percentage_infected: Model Parameter, float in [0, 1]

	Infected: Status Parameter, set of nodes

The two options are mutually exclusive and the latter takes precedence over the former.

Methods

The following class methods are made available to configure, describe and execute the simulation:

Configure

	
class ndlib.models.epidemics.GeneralisedThresholdModel.GeneralisedThresholdModel(graph)

	
Node Parameters to be specified via ModelConfig

	Parameters

	threshold – The node threshold. If not specified otherwise a value of 0.1 is assumed for all nodes.

	
GeneralisedThresholdModel.__init__(graph)

	Model Constructor
:param graph: A networkx graph object

	
GeneralisedThresholdModel.set_initial_status(self, configuration)

	Set the initial model configuration

	Parameters

	configuration – a `ndlib.models.ModelConfig.Configuration` object

	
GeneralisedThresholdModel.reset(self)

	Reset the simulation setting the actual status to the initial configuration.

Describe

	
GeneralisedThresholdModel.get_info(self)

	Describes the current model parameters (nodes, edges, status)

	Returns

	a dictionary containing for each parameter class the values specified during model configuration

	
GeneralisedThresholdModel.get_status_map(self)

	Specify the statuses allowed by the model and their numeric code

	Returns

	a dictionary (status->code)

Execute Simulation

	
GeneralisedThresholdModel.iteration(self)

	Execute a single model iteration
:return: Iteration_id, Incremental node status (dictionary node->status)

	
GeneralisedThresholdModel.iteration_bunch(self, bunch_size)

	Execute a bunch of model iterations

	Parameters

	
	bunch_size – the number of iterations to execute

	node_status – if the incremental node status has to be returned.

	Returns

	a list containing for each iteration a dictionary {“iteration”: iteration_id, “status”: dictionary_node_to_status}

Example

In the code below is shown an example of instantiation and execution of a Threshold model simulation on a random graph: we set the initial set of infected nodes as 1% of the overall population, and assign a threshold of 0.25 to all the nodes.

import networkx as nx
import ndlib.models.ModelConfig as mc
import ndlib.models.epidemics.GeneralisedThresholdModel as gth

Network topology
g = nx.erdos_renyi_graph(1000, 0.1)

Model selection
model = gth.GeneralisedThresholdModel(g)

Model Configuration
config = mc.Configuration()
config.add_model_parameter('percentage_infected', 0.1)
config.add_model_parameter('tau', 5)
config.add_model_parameter('mu', 5)

Setting node parameters
threshold = 0.25
for i in g.nodes():
 config.add_node_configuration("threshold", i, threshold)

model.set_initial_status(config)

Simulation execution
iterations = model.iteration_bunch(200)

	1

	János Török and János Kertész “Cascading collapse of online social networks” Scientific reports, vol. 7 no. 1, 2017

 Kertesz Threshold

Kertesz Threshold

The Kertesz Threshold model was introduced in 2015 by Ruan et al. 1 and it is an extension of the Watts threshold model 2.

The authors extend the classical model introducing a density r of blocked nodes – nodes which are immune to social influence – and a probability of spontaneous adoption p to capture external influence.

Thus, the model distinguishes three kinds of node: Blocked (B), Susceptible (S) and Adoptiong (A). The latter class breaks into two categories: vulnerable and stable nodes. A node can adopt either under its neighbors’ influence, or spontaneously, due to endogenous effects.

Statuses

During the simulation a node can experience the following statuses:

	Name

	Code

	Susceptible

	0

	Infected

	1

	Blocked

	-1

Parameters

	Name

	Type

	Value Type

	Default

	Mandatory

	Description

	adopter_rate

	Model

	float in [0, 1]

	0

	False

	Exogenous adoption rate

	percentage_blocked

	Model

	float in [0, 1]

	0.1

	False

	Blocked nodes

	threshold

	Node

	float in [0, 1]

	0.1

	False

	Individual threshold

The initial infection status can be defined via:

	percentage_infected: Model Parameter, float in [0, 1]

	Infected: Status Parameter, set of nodes

The initial blocked nodes can be defined via:

	percentage_blocked: Model Parameter, float in [0, 1]

	Blocked: Status Parameter, set of nodes

In both cases, the two options are mutually exclusive and the latter takes precedence over the former.

Methods

The following class methods are made available to configure, describe and execute the simulation:

Configure

	
class ndlib.models.epidemics.KerteszThresholdModel.KerteszThresholdModel(graph)

	
Node/Model Parameters to be specified via ModelConfig

	Parameters

	
	threshold – The node threshold. As default a value of 0.1 is assumed for all nodes.

	adopter_rate – The probability of spontaneous adoptions. Defaults value 0.

	percentage_infected – The percentage of blocked nodes. Default value 0.1.

	
KerteszThresholdModel.__init__(graph)

	Model Constructor

	Parameters

	graph – A networkx graph object

	
KerteszThresholdModel.set_initial_status(self, configuration)

	Set the initial model configuration

	Parameters

	configuration – a `ndlib.models.ModelConfig.Configuration` object

	
KerteszThresholdModel.reset(self)

	Reset the simulation setting the actual status to the initial configuration.

Describe

	
KerteszThresholdModel.get_info(self)

	Describes the current model parameters (nodes, edges, status)

	Returns

	a dictionary containing for each parameter class the values specified during model configuration

	
KerteszThresholdModel.get_status_map(self)

	Specify the statuses allowed by the model and their numeric code

	Returns

	a dictionary (status->code)

Execute Simulation

	
KerteszThresholdModel.iteration(self)

	Execute a single model iteration

	Returns

	Iteration_id, Incremental node status (dictionary node->status)

	
KerteszThresholdModel.iteration_bunch(self, bunch_size)

	Execute a bunch of model iterations

	Parameters

	
	bunch_size – the number of iterations to execute

	node_status – if the incremental node status has to be returned.

	Returns

	a list containing for each iteration a dictionary {“iteration”: iteration_id, “status”: dictionary_node_to_status}

Example

In the code below is shown an example of instantiation and execution of a Kertesz Threshold model simulation on a random graph: we set the initial infected as well blocked node sets equals to the 10% of the overall population, assign a threshold of 0.25 to all the nodes and impose an probability of spontaneous adoptions of 40%.

import networkx as nx
import ndlib.models.ModelConfig as mc
import ndlib.models.epidemics.KerteszThresholdModel as ks

Network topology
g = nx.erdos_renyi_graph(1000, 0.1)

Model selection
model = ks.KerteszThresholdModel(g)

Model Configuration
config = mc.Configuration()
config.add_model_parameter('adopter_rate', 0.4)
config.add_model_parameter('percentage_blocked', 0.1)
config.add_model_parameter('percentage_infected', 0.1)

Setting node parameters
threshold = 0.25
for i in g.nodes():
 config.add_node_configuration("threshold", i, threshold)

model.set_initial_status(config)

Simulation execution
iterations = model.iteration_bunch(200)

	1

	
	Ruan, G. In ̃iguez, M. Karsai, and J. Kertész, “Kinetics of social contagion,” Phys. Rev. Lett., vol. 115, p. 218702, Nov 2015.

	2

	
	
	Watts, “A simple model of global cascades on random networks,” Proceedings of the National Academy of Sciences, vol. 99, no. 9, pp. 5766–5771, 2002.

 Independent Cascades

Independent Cascades

The Independent Cascades model was introduced by Kempe et all in 2003 1.

This model starts with an initial set of active nodes A0: the diffusive process unfolds in discrete steps according to the following randomized rule:

	When node v becomes active in step t, it is given a single chance to activate each currently inactive neighbor w; it succeeds with a probability p(v,w).

	If w has multiple newly activated neighbors, their attempts are sequenced in an arbitrary order.

	If v succeeds, then w will become active in step t + 1; but whether or not v succeeds, it cannot make any further attempts to activate w in subsequent rounds.

	The process runs until no more activations are possible.

Statuses

During the simulation a node can experience the following statuses:

	Name

	Code

	Susceptible

	0

	Infected

	1

	Removed

	2

Parameters

	Name

	Type

	Value Type

	Default

	Mandatory

	Description

	Edge threshold

	Edge

	float in [0, 1]

	0.1

	False

	Edge threshold

The initial infection status can be defined via:

	percentage_infected: Model Parameter, float in [0, 1]

	Infected: Status Parameter, set of nodes

The two options are mutually exclusive and the latter takes precedence over the former.

Methods

The following class methods are made available to configure, describe and execute the simulation:

Configure

	
class ndlib.models.epidemics.IndependentCascadesModel.IndependentCascadesModel(graph)

	Edge Parameters to be specified via ModelConfig

	Parameters

	threshold – The edge threshold. As default a value of 0.1 is assumed for all edges.

	
IndependentCascadesModel.__init__(graph)

	Model Constructor

	Parameters

	graph – A networkx graph object

	
IndependentCascadesModel.set_initial_status(self, configuration)

	Set the initial model configuration

	Parameters

	configuration – a `ndlib.models.ModelConfig.Configuration` object

	
IndependentCascadesModel.reset(self)

	Reset the simulation setting the actual status to the initial configuration.

Describe

	
IndependentCascadesModel.get_info(self)

	Describes the current model parameters (nodes, edges, status)

	Returns

	a dictionary containing for each parameter class the values specified during model configuration

	
IndependentCascadesModel.get_status_map(self)

	Specify the statuses allowed by the model and their numeric code

	Returns

	a dictionary (status->code)

Execute Simulation

	
IndependentCascadesModel.iteration(self)

	Execute a single model iteration

	Returns

	Iteration_id, Incremental node status (dictionary node->status)

	
IndependentCascadesModel.iteration_bunch(self, bunch_size)

	Execute a bunch of model iterations

	Parameters

	
	bunch_size – the number of iterations to execute

	node_status – if the incremental node status has to be returned.

	Returns

	a list containing for each iteration a dictionary {“iteration”: iteration_id, “status”: dictionary_node_to_status}

Example

In the code below is shown an example of instantiation and execution of an Independent Cascades model simulation on a random graph: we set the initial set of infected nodes as 1% of the overall population, and assign a threshold of 0.1 to all the edges.

import networkx as nx
import ndlib.models.ModelConfig as mc
import ndlib.models.epidemics.IndependentCascadesModel as ids

Network topology
g = nx.erdos_renyi_graph(1000, 0.1)

Model selection
model = ids.IndependentCascadesModel(g)

Model Configuration
config = mc.Configuration()
config.add_model_parameter('percentage_infected', 0.1)

Setting the edge parameters
threshold = 0.1
for e in g.edges():
 config.add_edge_configuration("threshold", e, threshold)

model.set_initial_status(config)

Simulation execution
iterations = model.iteration_bunch(200)

	1

	
	Kempe, J. Kleinberg, and E. Tardos, “Maximizing the spread of influence through a social network,” in Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ser. KDD ’03, 2003, pp. 137–146.

 Profile

Profile

The Profile model was introduced in 2017 by Milli et al. 1.

The Profile model assumes that the diffusion process is only apparent; each node decides to adopt or not a given behavior – once known its existence – only on the basis of its own interests.

In this scenario the peer pressure is completely ruled out from the overall model: it is not important how many of its neighbors have adopted a specific behaviour, if the node does not like it, it will not change its interests.

Each node has its own profile describing how many it is likely to accept a behaviour similar to the one that is currently spreading.

The diffusion process starts from a set of nodes that have already adopted a given behaviour S:

	for each of the susceptible nodes’ in the neighborhood of a node u in S an unbalanced coin is flipped, the unbalance given by the personal profile of the susceptible node;

	if a positive result is obtained the susceptible node will adopt the behaviour, thus becoming infected.

	if the blocked status is enabled, after having rejected the adoption with probability blocked a node becomes immune to the infection.

	every iteration adopter_rate percentage of nodes spontaneous became infected to endogenous effects.

Statuses

During the simulation a node can experience the following statuses:

	Name

	Code

	Susceptible

	0

	Infected

	1

	Blocked

	-1

Parameters

	Name

	Type

	Value Type

	Default

	Mandatory

	Description

	profile

	Node

	float in [0, 1]

	0.1

	False

	Node profile

	blocked

	Model

	float in [0, 1]

	0

	False

	Blocked nodes

	adopter_rate

	Model

	float in [0, 1]

	0

	False

	Autonomous adoption

The initial infection status can be defined via:

	percentage_infected: Model Parameter, float in [0, 1]

	Infected: Status Parameter, set of nodes

The two options are mutually exclusive and the latter takes precedence over the former.

Methods

The following class methods are made available to configure, describe and execute the simulation:

Configure

	
class ndlib.models.epidemics.ProfileModel.ProfileModel(graph)

	
Node Parameters to be specified via ModelConfig

	Parameters

	profile – The node profile. As default a value of 0.1 is assumed for all nodes.

	
ProfileModel.__init__(graph)

	Model Constructor

	Parameters

	graph – A networkx graph object

	
ProfileModel.set_initial_status(self, configuration)

	Set the initial model configuration

	Parameters

	configuration – a `ndlib.models.ModelConfig.Configuration` object

	
ProfileModel.reset(self)

	Reset the simulation setting the actual status to the initial configuration.

Describe

	
ProfileModel.get_info(self)

	Describes the current model parameters (nodes, edges, status)

	Returns

	a dictionary containing for each parameter class the values specified during model configuration

	
ProfileModel.get_status_map(self)

	Specify the statuses allowed by the model and their numeric code

	Returns

	a dictionary (status->code)

Execute Simulation

	
ProfileModel.iteration(self)

	Execute a single model iteration

	Returns

	Iteration_id, Incremental node status (dictionary node->status)

	
ProfileModel.iteration_bunch(self, bunch_size)

	Execute a bunch of model iterations

	Parameters

	
	bunch_size – the number of iterations to execute

	node_status – if the incremental node status has to be returned.

	Returns

	a list containing for each iteration a dictionary {“iteration”: iteration_id, “status”: dictionary_node_to_status}

Example

In the code below is shown an example of instantiation and execution of a Profile model simulation on a random graph: we set the initial infected node set to the 10% of the overall population and assign a profile of 0.25 to all the nodes.

import networkx as nx
import ndlib.models.ModelConfig as mc
import ndlib.models.epidemics.ProfileModel as pr

Network topology
g = nx.erdos_renyi_graph(1000, 0.1)

Model selection
model = pr.ProfileModel(g)
config = mc.Configuration()
config.add_model_parameter('blocked', 0)
config.add_model_parameter('adopter_rate', 0)
config.add_model_parameter('percentage_infected', 0.1)

Setting nodes parameters
profile = 0.15
for i in g.nodes():
 config.add_node_configuration("profile", i, profile)

model.set_initial_status(config)

Simulation execution
iterations = model.iteration_bunch(200)

	1

	Letizia Milli, Giulio Rossetti, Dino Pedreschi, Fosca Giannotti, “Information Diffusion in Complex Networks: The Active/Passive Conundrum,” Proceedings of International Conference on Complex Networks and their Applications, (pp. 305-313). Springer, Cham. 2017

 Profile Threshold

Profile Threshold

The Profile-Threshold model was introduced in 2017 by Milli et al. 1.

The Profile-Threshold model assumes the existence of node profiles that act as preferential schemas for individual tastes but relax the constraints imposed by the Profile model by letting nodes influenceable via peer pressure mechanisms.

The peer pressure is modeled with a threshold.

The diffusion process starts from a set of nodes that have already adopted a given behaviour S:

	for each of the susceptible node an unbalanced coin is flipped if the percentage of its neighbors that are already infected excedes its threhosld. As in the Profile Model the coin unbalance is given by the personal profile of the susceptible node;

	if a positive result is obtained the susceptible node will adopt the behaviour, thus becoming infected.

	if the blocked status is enabled, after having rejected the adoption with probability blocked a node becomes immune to the infection.

	every iteration adopter_rate percentage of nodes spontaneous became infected to endogenous effects.

Statuses

During the simulation a node can experience the following statuses:

	Name

	Code

	Susceptible

	0

	Infected

	1

	Blocked

	-1

Parameters

	Name

	Type

	Value Type

	Default

	Mandatory

	Description

	threshold

	Node

	float in [0, 1]

	0.1

	False

	Individual threshold

	profile

	Node

	float in [0, 1]

	0.1

	False

	Node profile

	blocked

	Model

	float in [0, 1]

	0

	False

	Blocked nodes

	adopter_rate

	Model

	float in [0, 1]

	0

	False

	Autonomous adoption

The initial infection status can be defined via:

	percentage_infected: Model Parameter, float in [0, 1]

	Infected: Status Parameter, set of nodes

The two options are mutually exclusive and the latter takes precedence over the former.

Methods

The following class methods are made available to configure, describe and execute the simulation:

Configure

	
class ndlib.models.epidemics.ProfileThresholdModel.ProfileThresholdModel(graph)

	Node Parameters to be specified via ModelConfig

	Parameters

	
	profile – The node profile. As default a value of 0.1 is assumed for all nodes.

	threshold – The node threshold. As default a value of 0.1 is assumed for all nodes.

	
ProfileThresholdModel.__init__(graph)

	Model Constructor

	Parameters

	graph – A networkx graph object

	
ProfileThresholdModel.set_initial_status(self, configuration)

	Set the initial model configuration

	Parameters

	configuration – a `ndlib.models.ModelConfig.Configuration` object

	
ProfileThresholdModel.reset(self)

	Reset the simulation setting the actual status to the initial configuration.

Describe

	
ProfileThresholdModel.get_info(self)

	Describes the current model parameters (nodes, edges, status)

	Returns

	a dictionary containing for each parameter class the values specified during model configuration

	
ProfileThresholdModel.get_status_map(self)

	Specify the statuses allowed by the model and their numeric code

	Returns

	a dictionary (status->code)

Execute Simulation

	
ProfileThresholdModel.iteration(self)

	Execute a single model iteration

	Returns

	Iteration_id, Incremental node status (dictionary node->status)

	
ProfileThresholdModel.iteration_bunch(self, bunch_size)

	Execute a bunch of model iterations

	Parameters

	
	bunch_size – the number of iterations to execute

	node_status – if the incremental node status has to be returned.

	Returns

	a list containing for each iteration a dictionary {“iteration”: iteration_id, “status”: dictionary_node_to_status}

Example

In the code below is shown an example of instantiation and execution of a Profile Threshold model simulation on a random graph: we set the initial infected node set to the 10% of the overall population, assign a profile of 0.25 and a threshold of 0.15 to all the nodes.

import networkx as nx
import ndlib.models.ModelConfig as mc
import ndlib.models.epidemics.ProfileThresholdModel as pt

Network topology
g = nx.erdos_renyi_graph(1000, 0.1)

Model selection
model = pt.ProfileThresholdModel(g)
config = mc.Configuration()
config.add_model_parameter('blocked', 0)
config.add_model_parameter('adopter_rate', 0)
config.add_model_parameter('percentage_infected', 0.1)

Setting nodes parameters
threshold = 0.15
profile = 0.25
for i in g.nodes():
 config.add_node_configuration("threshold", i, threshold)
 config.add_node_configuration("profile", i, profile)

model.set_initial_status(config)

Simulation execution
iterations = model.iteration_bunch(200)

	1

	Letizia Milli, Giulio Rossetti, Dino Pedreschi, Fosca Giannotti, “Information Diffusion in Complex Networks: The Active/Passive Conundrum,” Proceedings of International Conference on Complex Networks and their Applications, (pp. 305-313). Springer, Cham. 2017

 Voter

Voter

The Voter model is one of the simplest models of opinion dynamics, originally introduced to analyse competition of species 1 and soon after applied to model elections 2.

The model assumes the opinion of an individual to be a discrete variable ±1.

The state of the population varies based on a very simple update rule: at each iteration, a random individual is selected, who then copies the opinion of one random neighbour.

Starting from any initial configuration, on a complete network the entire population converges to consensus on one of the two options. The probability that consensus is reached on opinion +1 is equal to the initial fraction of individuals holding that opinion 3.

Statuses

During the simulation a node can experience the following statuses:

	Name

	Code

	Susceptible

	0

	Infected

	1

Parameters

The initial infection status can be defined via:

	percentage_infected: Model Parameter, float in [0, 1]

	Infected: Status Parameter, set of nodes

The initial blocked nodes can be defined via:

	percentage_blocked: Model Parameter, float in [0, 1]

	Blocked: Status Parameter, set of nodes

In both cases, the two options are mutually exclusive and the latter takes precedence over the former.

Methods

The following class methods are made available to configure, describe and execute the simulation:

Configure

	
class ndlib.models.opinions.VoterModel.VoterModel(graph)

	

	
VoterModel.__init__(graph)

	Model Constructor

	Parameters

	graph – A networkx graph object

	
VoterModel.set_initial_status(self, configuration)

	Set the initial model configuration

	Parameters

	configuration – a `ndlib.models.ModelConfig.Configuration` object

	
VoterModel.reset(self)

	Reset the simulation setting the actual status to the initial configuration.

Describe

	
VoterModel.get_info(self)

	Describes the current model parameters (nodes, edges, status)

	Returns

	a dictionary containing for each parameter class the values specified during model configuration

	
VoterModel.get_status_map(self)

	Specify the statuses allowed by the model and their numeric code

	Returns

	a dictionary (status->code)

Execute Simulation

	
VoterModel.iteration(self)

	Execute a single model iteration

	Returns

	Iteration_id, Incremental node status (dictionary node->status)

	
VoterModel.iteration_bunch(self, bunch_size)

	Execute a bunch of model iterations

	Parameters

	
	bunch_size – the number of iterations to execute

	node_status – if the incremental node status has to be returned.

	Returns

	a list containing for each iteration a dictionary {“iteration”: iteration_id, “status”: dictionary_node_to_status}

Example

In the code below is shown an example of instantiation and execution of a Voter model simulation on a random graph: we set the initial infected node set to the 10% of the overall population.

import networkx as nx
import ndlib.models.ModelConfig as mc
import ndlib.models.opinions.VoterModel as vt

Network topology
g = nx.erdos_renyi_graph(1000, 0.1)

Model selection
model = vt.VoterModel(g)
config = mc.Configuration()
config.add_model_parameter('percentage_infected', 0.1)

model.set_initial_status(config)

Simulation execution
iterations = model.iteration_bunch(200)

	1

	
	Clifford and A. Sudbury, “A model for spatial conflict,” Biometrika, vol. 60, no. 3, pp. 581–588, 1973.

	2

	
	Holley and T. Liggett, “Ergodic theorems for weakly interacting infinite systems and the voter model,” Ann. Probab., vol. 3, no. 4, pp. 643–663, Aug 1975.

	3

	P.L.Krapivsky,S.Redner,andE.Ben-Naim,Akineticviewofstatistical physics. Cambridge University Press, 2010.

 Q-Voter

Q-Voter

The Q-Voter model was introduced as a generalisation of discrete opinion dynamics models 1.

Here, N individuals hold an opinion ±1.
At each time step, a set of q neighbours are chosen and, if they agree, they influence one neighbour chosen at random, i.e. this agent copies the opinion of the group.
If the group does not agree, the agent flips its opinion with probability ε.

It is clear that the voter and Sznajd models are special cases of this more recent model (q = 1,ε = 0 and q = 2,ε = 0).

Analytic results for q ≤ 3 validate the numerical results obtained for the special case models, with transitions from a ordered phase (small ε) to a disordered one (large ε).
For q > 3, a new type of transition between the two phases appears, which consist of passing through an intermediate regime where the final state depends on the initial condition. We implemented in NDlib the model with ε = 0.

Statuses

During the simulation a node can experience the following statuses:

	Name

	Code

	Susceptible

	0

	Infected

	1

Parameters

	Name

	Type

	Value Type

	Default

	Mandatory

	Description

	q

	Model

	int in [0, V(G)]

	
	True

	Number of neighbours

The initial infection status can be defined via:

	percentage_infected: Model Parameter, float in [0, 1]

	Infected: Status Parameter, set of nodes

The two options are mutually exclusive and the latter takes precedence over the former.

Methods

The following class methods are made available to configure, describe and execute the simulation:

Configure

	
class ndlib.models.opinions.QVoterModel.QVoterModel(graph)

	Node Parameters to be specified via ModelConfig

	Parameters

	q – the number of neighbors that affect the opinion of a node

	
QVoterModel.__init__(graph)

	Model Constructor

	Parameters

	graph – A networkx graph object

	
QVoterModel.set_initial_status(self, configuration)

	Set the initial model configuration

	Parameters

	configuration – a `ndlib.models.ModelConfig.Configuration` object

	
QVoterModel.reset(self)

	Reset the simulation setting the actual status to the initial configuration.

Describe

	
QVoterModel.get_info(self)

	Describes the current model parameters (nodes, edges, status)

	Returns

	a dictionary containing for each parameter class the values specified during model configuration

	
QVoterModel.get_status_map(self)

	Specify the statuses allowed by the model and their numeric code

	Returns

	a dictionary (status->code)

Execute Simulation

	
QVoterModel.iteration(self)

	Execute a single model iteration

	Returns

	Iteration_id, Incremental node status (dictionary node->status)

	
QVoterModel.iteration_bunch(self, bunch_size)

	Execute a bunch of model iterations

	Parameters

	
	bunch_size – the number of iterations to execute

	node_status – if the incremental node status has to be returned.

	Returns

	a list containing for each iteration a dictionary {“iteration”: iteration_id, “status”: dictionary_node_to_status}

Example

In the code below is shown an example of instantiation and execution of a Q-Voter model simulation on a random graph: we set the initial infected node set to the 10% of the overall population and the number q of influencing neighbors equals to 5.

import networkx as nx
import ndlib.models.ModelConfig as mc
import ndlib.models.opinions.QVoterModel as qvt

Network topology
g = nx.erdos_renyi_graph(1000, 0.1)

Model selection
model = qvt.QVoterModel(g)
config = mc.Configuration()
config.add_model_parameter("q", 5)
config.add_model_parameter('percentage_infected', 0.1)

model.set_initial_status(config)

Simulation execution
iterations = model.iteration_bunch(200)

	1

	
	Castellano, M. A. Munoz, and R. Pastor-Satorras, “The non-linear q-voter model,” Physical Review E, vol. 80, p. 041129, 2009.

 Majority Rule

Majority Rule

The Majority Rule model is a discrete model of opinion dynamics, proposed to describe public debates 1.

Agents take discrete opinions ±1, just like the Voter model.
At each time step a group of r agents is selected randomly and they all take the majority opinion within the group.

The group size can be fixed or taken at each time step from a specific distribution.
If r is odd, then the majority opinion is always defined, however if r is even there could be tied situations. To select a prevailing opinion in this case, a bias in favour of one opinion (+1) is introduced.

This idea is inspired by the concept of social inertia 2.

Statuses

During the simulation a node can experience the following statuses:

	Name

	Code

	Susceptible

	0

	Infected

	1

Parameters

	Name

	Type

	Value Type

	Default

	Mandatory

	Description

	q

	Model

	int in [0, V(G)]

	
	True

	Number of neighbours

The initial infection status can be defined via:

	percentage_infected: Model Parameter, float in [0, 1]

	Infected: Status Parameter, set of nodes

The two options are mutually exclusive and the latter takes precedence over the former.

Methods

The following class methods are made available to configure, describe and execute the simulation:

Configure

	
class ndlib.models.opinions.MajorityRuleModel.MajorityRuleModel(graph)

	

	
MajorityRuleModel.__init__(graph)

	Model Constructor

	Parameters

	graph – A networkx graph object

	
MajorityRuleModel.set_initial_status(self, configuration)

	Set the initial model configuration

	Parameters

	configuration – a `ndlib.models.ModelConfig.Configuration` object

	
MajorityRuleModel.reset(self)

	Reset the simulation setting the actual status to the initial configuration.

Describe

	
MajorityRuleModel.get_info(self)

	Describes the current model parameters (nodes, edges, status)

	Returns

	a dictionary containing for each parameter class the values specified during model configuration

	
MajorityRuleModel.get_status_map(self)

	Specify the statuses allowed by the model and their numeric code

	Returns

	a dictionary (status->code)

Execute Simulation

	
MajorityRuleModel.iteration(self)

	Execute a single model iteration

	Returns

	Iteration_id, Incremental node status (dictionary node->status)

	
MajorityRuleModel.iteration_bunch(self, bunch_size)

	Execute a bunch of model iterations

	Parameters

	
	bunch_size – the number of iterations to execute

	node_status – if the incremental node status has to be returned.

	Returns

	a list containing for each iteration a dictionary {“iteration”: iteration_id, “status”: dictionary_node_to_status}

Example

In the code below is shown an example of instantiation and execution of a Majority Rule model simulation on a random graph: we set the initial infected node set to the 10% of the overall population.

import networkx as nx
import ndlib.models.ModelConfig as mc
import ndlib.models.opinions.MajorityRuleModel as mr

Network topology
g = nx.erdos_renyi_graph(1000, 0.1)

Model selection
model = mr.MajorityRuleModel(g)
config = mc.Configuration()
config.add_model_parameter('percentage_infected', 0.1)

model.set_initial_status(config)

Simulation execution
iterations = model.iteration_bunch(200)

	1

	S.Galam, “Minority opinion spreading in random geometry.” Eur.Phys. J. B, vol. 25, no. 4, pp. 403–406, 2002.

	2

	R.Friedman and M.Friedman, “The Tyranny of the Status Quo.” Orlando, FL, USA: Harcourt Brace Company, 1984.

 Sznajd

Sznajd

The Sznajd model 1 is a variant of spin model employing the theory of social impact, which takes into account the fact that a group of individuals with the same opinion can influence their neighbours more than one single individual.

In the original model the social network is a 2-dimensional lattice, however we also implemented the variant on any complex networks.

Each agent has an opinion σi = ±1.
At each time step, a pair of neighbouring agents is selected and, if their opinion coincides, all their neighbours take that opinion.

The model has been shown to converge to one of the two agreeing stationary states, depending on the initial density of up-spins (transition at 50% density).

Statuses

During the simulation a node can experience the following statuses:

	Name

	Code

	Susceptible

	0

	Infected

	1

Parameters

The initial infection status can be defined via:

	percentage_infected: Model Parameter, float in [0, 1]

	Infected: Status Parameter, set of nodes

The two options are mutually exclusive and the latter takes precedence over the former.

Methods

The following class methods are made available to configure, describe and execute the simulation:

Configure

	
class ndlib.models.opinions.SznajdModel.SznajdModel(graph)

	

	
SznajdModel.__init__(graph)

	Model Constructor

	Parameters

	graph – A networkx graph object

	
SznajdModel.set_initial_status(self, configuration)

	Set the initial model configuration

	Parameters

	configuration – a `ndlib.models.ModelConfig.Configuration` object

	
SznajdModel.reset(self)

	Reset the simulation setting the actual status to the initial configuration.

Describe

	
SznajdModel.get_info(self)

	Describes the current model parameters (nodes, edges, status)

	Returns

	a dictionary containing for each parameter class the values specified during model configuration

	
SznajdModel.get_status_map(self)

	Specify the statuses allowed by the model and their numeric code

	Returns

	a dictionary (status->code)

Execute Simulation

	
SznajdModel.iteration(self)

	Execute a single model iteration

	Returns

	Iteration_id, Incremental node status (dictionary node->status)

	
SznajdModel.iteration_bunch(self, bunch_size)

	Execute a bunch of model iterations

	Parameters

	
	bunch_size – the number of iterations to execute

	node_status – if the incremental node status has to be returned.

	Returns

	a list containing for each iteration a dictionary {“iteration”: iteration_id, “status”: dictionary_node_to_status}

Example

In the code below is shown an example of instantiation and execution of a Sznajd model simulation on a random graph: we set the initial infected node set to the 10% of the overall population.

import networkx as nx
import ndlib.models.ModelConfig as mc
import ndlib.models.opinions.SznajdModel as sn

Network topology
g = nx.erdos_renyi_graph(1000, 0.1)

Model selection
model = sn.SznajdModel(g)
config = mc.Configuration()
config.add_model_parameter('percentage_infected', 0.1)

model.set_initial_status(config)

Simulation execution
iterations = model.iteration_bunch(200)

	1

	
	Sznajd-Weron and J. Sznajd, “Opinion evolution in closed community,” International Journal of Modern Physics C, vol. 11, pp. 1157–1165, 2001.

 Cognitive Opinion Dynamics

Cognitive Opinion Dynamics

The Cognitive Opinion Dynamics model was introduced in 1, which models the state of individuals taking into account several cognitively-grounded variables.

The aim of the model is to simulate response to risk in catastrophic events in the presence of external (institutional) information.

The individual opinion is modelled as a continuous variable Oi ∈ [0, 1], representing the degree of perception of the risk (how probable it is that the catastrophic event will actually happen).

This opinion evolves through interactions with neighbours and external information, based on four internal variables for each individual i:

	risk sensitivity (Ri ∈ {−1, 0, 1}),

	tendency to inform others (βi ∈ [0,1]),

	trust in institutions (Ti ∈ [0,1]), and

	trust in peers (Πi = 1 − Ti).

These values are generated when the population is initialised and stay fixed during the simulation.

The update rules define how Oi values change in time.

The model was shown to be able to reproduce well various real situations. In particular, it is visible that risk sensitivity is more important than trust in institutional information when it comes to evaluating risky situations.

Statuses

Node statuses are continuous values in [0,1].

Parameters

	Name

	Type

	Value Type

	Default

	Mandatory

	Description

	I

	Model

	float in [0, 1]

	
	True

	External information

	T_range_min

	Model

	float in [0, 1]

	
	True

	Minimum of the range of initial values for T

	T_range_max

	Model

	float in [0, 1]

	
	True

	Maximum of the range of initial values for T

	B_range_min

	Model

	float in [0, 1]

	
	True

	Minimum of the range of initial values for B

	B_range_max

	Model

	float in [0, 1]

	
	True

	Maximum of the range of initial values for B

	R_fraction_negative

	Model

	float in [0, 1]

	
	True

	Fraction of nodes having R=-1

	R_fraction_neutral

	Model

	float in [0, 1]

	
	True

	Fraction of nodes having R=0

	R_fraction_positive

	Model

	float in [0, 1]

	
	True

	Fraction of nodes having R=1

The following relation should hold: R_fraction_negative+R_fraction_neutral+R_fraction_positive=1.
To achieve this, the fractions selected will be normalised to sum 1.

The initial state is generated randomly uniformly from the domain defined by model parameters.

The initial infection status can be defined via:

	percentage_infected: Model Parameter, float in [0, 1]

	Infected: Status Parameter, set of nodes

The two options are mutually exclusive and the latter takes precedence over the former.

Methods

The following class methods are made available to configure, describe and execute the simulation:

Configure

	
class ndlib.models.opinions.CognitiveOpDynModel.CognitiveOpDynModel(graph)

	Model Parameters to be specified via ModelConfig

	Parameters

	
	I – external information value in [0,1]

	T_range_min – the minimum of the range of initial values for T. Range [0,1].

	T_range_max – the maximum of the range of initial values for T. Range [0,1].

	B_range_min – the minimum of the range of initial values for B. Range [0,1]

	B_range_max – the maximum of the range of initial values for B. Range [0,1].

	R_fraction_negative – fraction of individuals having the node parameter R=-1.

	R_fraction_positive – fraction of individuals having the node parameter R=1

	R_fraction_neutral – fraction of individuals having the node parameter R=0

The following relation should hold: R_fraction_negative+R_fraction_neutral+R_fraction_positive=1.
To achieve this, the fractions selected will be normalised to sum 1.
Node states are continuous values in [0,1].

The initial state is generated randomly uniformly from the domain defined by model parameters.

	
CognitiveOpDynModel.__init__(graph)

	Model Constructor

	Parameters

	graph – A networkx graph object

	
CognitiveOpDynModel.set_initial_status(self, configuration)

	Override behaviour of methods in class DiffusionModel.
Overwrites initial status using random real values.
Generates random node profiles.

	
CognitiveOpDynModel.reset(self)

	Reset the simulation setting the actual status to the initial configuration.

Describe

	
CognitiveOpDynModel.get_info(self)

	Describes the current model parameters (nodes, edges, status)

	Returns

	a dictionary containing for each parameter class the values specified during model configuration

	
CognitiveOpDynModel.get_status_map(self)

	Specify the statuses allowed by the model and their numeric code

	Returns

	a dictionary (status->code)

Execute Simulation

	
CognitiveOpDynModel.iteration(self)

	Execute a single model iteration

	Returns

	Iteration_id, Incremental node status (dictionary node->status)

	
CognitiveOpDynModel.iteration_bunch(self, bunch_size)

	Execute a bunch of model iterations

	Parameters

	
	bunch_size – the number of iterations to execute

	node_status – if the incremental node status has to be returned.

	Returns

	a list containing for each iteration a dictionary {“iteration”: iteration_id, “status”: dictionary_node_to_status}

Example

In the code below is shown an example of instantiation and execution of a Cognitive Opinion Dynamics model simulation on a random graph: we set the initial infected node set to the 10% of the overall population, the external information value to 015, the B and T intervals equal to [0,1] and the fraction of positive/neutral/infected equal to 1/3.

import networkx as nx
import ndlib.models.ModelConfig as mc
import ndlib.models.opinions.CognitiveOpDynModel as cod

Network topology
g = nx.erdos_renyi_graph(1000, 0.1)

Model selection
model = cod.CognitiveOpDynModel(g)

Model Configuration
config = mc.Configuration()
config.add_model_parameter("I", 0.15)
config.add_model_parameter("B_range_min", 0)
config.add_model_parameter("B_range_max", 1)
config.add_model_parameter("T_range_min", 0)
config.add_model_parameter("T_range_max", 1)
config.add_model_parameter("R_fraction_negative", 1.0 / 3)
config.add_model_parameter("R_fraction_neutral", 1.0 / 3)
config.add_model_parameter("R_fraction_positive", 1.0 / 3)
config.add_model_parameter('percentage_infected', 0.1)
model.set_initial_status(config)

Simulation execution
iterations = model.iteration_bunch(200)

	1

	
	Vilone, F. Giardini, M. Paolucci, and R. Conte, “Reducing individuals’ risk sensitiveness can promote positive and non-alarmist views about catastrophic events in an agent-based simulation,” arXiv preprint arXiv:1609.04566, 2016.

 SI

SI

The SI model was introduced in 1927 by Kermack 1.

In this model, during the course of an epidemics, a node is allowed to change its status only from Susceptible (S) to Infected (I).

The model is instantiated on a graph having a non-empty set of infected nodes.

SI assumes that if, during a generic iteration, a susceptible node comes into contact with an infected one, it becomes infected with probability β: once a node becomes infected, it stays infected (the only transition allowed is S→I).

The dSI implementation assumes that the process occurs on a directed/undirected dynamic network; this model was introduced by Milli et al. in 2018 2.

Statuses

During the simulation a node can experience the following statuses:

	Name

	Code

	Susceptible

	0

	Infected

	1

Parameters

	Name

	Type

	Value Type

	Default

	Mandatory

	Description

	beta

	Model

	float in [0, 1]

	
	True

	Infection probability

The initial infection status can be defined via:

	percentage_infected: Model Parameter, float in [0, 1]

	Infected: Status Parameter, set of nodes

The two options are mutually exclusive and the latter takes precedence over the former.

Methods

The following class methods are made available to configure, describe and execute the simulation:

Configure

	
class ndlib.models.dynamic.DynSIModel.DynSIModel(graph)

	Model Parameters to be specified via ModelConfig

	Parameters

	beta – The infection rate (float value in [0,1])

	
DynSIModel.__init__(graph)

	Model Constructor

	Parameters

	graph – A dynetx graph object

	
DynSIModel.set_initial_status(self, configuration)

	Set the initial model configuration

	Parameters

	configuration – a `ndlib.models.ModelConfig.Configuration` object

	
DynSIModel.reset(self)

	Reset the simulation setting the actual status to the initial configuration.

Describe

	
DynSIModel.get_info(self)

	Describes the current model parameters (nodes, edges, status)

	Returns

	a dictionary containing for each parameter class the values specified during model configuration

	
DynSIModel.get_status_map(self)

	Specify the statuses allowed by the model and their numeric code

	Returns

	a dictionary (status->code)

Execute Simulation

	
DynSIModel.iteration(self)

	Execute a single model iteration

	Returns

	Iteration_id, Incremental node status (dictionary node->status)

	
DynSIModel.execute_snapshots(bunch_size, node_status)

	

	
DynSIModel.execute_iterations(node_status)

	

Example

In the code below is shown an example of instantiation and execution of an DynSI simulation on a dynamic random graph: we set the initial set of infected nodes as 5% of the overall population and a probability of infection of 1%.

import networkx as nx
import dynetx as dn
import ndlib.models.ModelConfig as mc
import ndlib.models.dynamic.DynSIModel as si

Dynamic Network topology
dg = dn.DynGraph()

for t in past.builtins.xrange(0, 3):
 g = nx.erdos_renyi_graph(200, 0.05)
 dg.add_interactions_from(g.edges(), t)

Model selection
model = si.DynSIModel(dg)

Model Configuration
config = mc.Configuration()
config.add_model_parameter('beta', 0.01)
config.add_model_parameter("percentage_infected", 0.1)
model.set_initial_status(config)

Simulate snapshot based execution
iterations = model.execute_snapshots()

Simulation interaction graph based execution
iterations = model.execute_iterations()

	1

	
	
	Kermack and A. McKendrick, “A Contribution to the Mathematical Theory of Epidemics,” Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, vol. 115, no. 772, pp. 700–721, Aug. 1927.

	2

	Letizia Milli, Giulio Rossetti, Fosca Giannotti, Dino Pedreschi. “Diffusive Phenomena in Dynamic Networks: a data-driven study”. Accepted to International Conference on Complex Networks (CompleNet), 2018, Boston.

 SIS

SIS

The SIS model was introduced in 1927 by Kermack 1.

In this model, during the course of an epidemics, a node is allowed to change its status from Susceptible (S) to Infected (I).

The model is instantiated on a graph having a non-empty set of infected nodes.

SIS assumes that if, during a generic iteration, a susceptible node comes into contact with an infected one, it becomes infected with probability beta, than it can be switch again to susceptible with probability lambda (the only transition allowed are S→I→S).

The dSIS implementation assumes that the process occurs on a directed/undirected dynamic network.

Statuses

During the simulation a node can experience the following statuses:

	Name

	Code

	Susceptible

	0

	Infected

	1

Parameters

	Name

	Type

	Value Type

	Default

	Mandatory

	Description

	beta

	Model

	float in [0, 1]

	
	True

	Infection probability

	lambda

	Model

	float in [0, 1]

	
	True

	Recovery probability

The initial infection status can be defined via:

	percentage_infected: Model Parameter, float in [0, 1]

	Infected: Status Parameter, set of nodes

The two options are mutually exclusive and the latter takes precedence over the former.

Methods

The following class methods are made available to configure, describe and execute the simulation:

Configure

	
class ndlib.models.dynamic.DynSISModel.DynSISModel(graph)

	Model Parameters to be specified via ModelConfig

	Parameters

	
	beta – The infection rate (float value in [0,1])

	lambda – The recovery rate (float value in [0,1])

	
DynSISModel.__init__(graph)

	Model Constructor

	Parameters

	graph – A networkx graph object

	
DynSISModel.set_initial_status(self, configuration)

	Set the initial model configuration

	Parameters

	configuration – a `ndlib.models.ModelConfig.Configuration` object

	
DynSISModel.reset(self)

	Reset the simulation setting the actual status to the initial configuration.

Describe

	
DynSISModel.get_info(self)

	Describes the current model parameters (nodes, edges, status)

	Returns

	a dictionary containing for each parameter class the values specified during model configuration

	
DynSISModel.get_status_map(self)

	Specify the statuses allowed by the model and their numeric code

	Returns

	a dictionary (status->code)

Execute Simulation

	
DynSISModel.iteration(self)

	Execute a single model iteration

	Returns

	Iteration_id, Incremental node status (dictionary node->status)

	
DynSISModel.execute_snapshots(bunch_size, node_status)

	

	
DynSISModel.execute_iterations(node_status)

	

Example

In the code below is shown an example of instantiation and execution of an DynSIS simulation on a dynamic random graph: we set the initial set of infected nodes as 5% of the overall population, a probability of infection of 1%, and a probability of recovery of 1%.

import networkx as nx
import dynetx as dn
import ndlib.models.ModelConfig as mc
import ndlib.models.dynamic.DynSISModel as sis

Dynamic Network topology
dg = dn.DynGraph()

for t in past.builtins.xrange(0, 3):
 g = nx.erdos_renyi_graph(200, 0.05)
 dg.add_interactions_from(g.edges(), t)

Model selection
model = sis.DynSISModel(dg)

Model Configuration
config = mc.Configuration()
config.add_model_parameter('beta', 0.01)
config.add_model_parameter('lambda', 0.01)
config.add_model_parameter("percentage_infected", 0.1)
model.set_initial_status(config)

Simulate snapshot based execution
iterations = model.execute_snapshots()

Simulation interaction graph based execution
iterations = model.execute_iterations()

	1

	
	
	Kermack and A. McKendrick, “A Contribution to the Mathematical Theory of Epidemics,” Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, vol. 115, no. 772, pp. 700–721, Aug. 1927

 SIR

SIR

The SIR model was introduced in 1927 by Kermack 1.

In this model, during the course of an epidemics, a node is allowed to change its status from Susceptible (S) to Infected (I), then to Removed (R).

The model is instantiated on a graph having a non-empty set of infected nodes.

SIR assumes that if, during a generic iteration, a susceptible node comes into contact with an infected one, it becomes infected with probability beta, than it can be switch to removed with probability gamma (the only transition allowed are S→I→R).

The dSIR implementation assumes that the process occurs on a directed/undirected dynamic network; this model was introduced by Milli et al. in 2018 2.

Statuses

During the simulation a node can experience the following statuses:

	Name

	Code

	Susceptible

	0

	Infected

	1

	Removed

	2

Parameters

	Name

	Type

	Value Type

	Default

	Mandatory

	Description

	beta

	Model

	float in [0, 1]

	
	True

	Infection probability

	gamma

	Model

	float in [0, 1]

	
	True

	Removal probability

The initial infection status can be defined via:

	percentage_infected: Model Parameter, float in [0, 1]

	Infected: Status Parameter, set of nodes

The two options are mutually exclusive and the latter takes precedence over the former.

Methods

The following class methods are made available to configure, describe and execute the simulation:

Configure

	
class ndlib.models.dynamic.DynSIRModel.DynSIRModel(graph)

	Model Parameters to be specified via ModelConfig

	Parameters

	
	beta – The infection rate (float value in [0,1])

	gamma – The recovery rate (float value in [0,1])

	
DynSIRModel.__init__(graph)

	Model Constructor

	Parameters

	graph – A networkx graph object

	
DynSIRModel.set_initial_status(self, configuration)

	Set the initial model configuration

	Parameters

	configuration – a `ndlib.models.ModelConfig.Configuration` object

	
DynSIRModel.reset(self)

	Reset the simulation setting the actual status to the initial configuration.

Describe

	
DynSIRModel.get_info(self)

	Describes the current model parameters (nodes, edges, status)

	Returns

	a dictionary containing for each parameter class the values specified during model configuration

	
DynSIRModel.get_status_map(self)

	Specify the statuses allowed by the model and their numeric code

	Returns

	a dictionary (status->code)

Execute Simulation

	
DynSIRModel.iteration(self)

	Execute a single model iteration

	Returns

	Iteration_id, Incremental node status (dictionary node->status)

	
DynSIRModel.execute_snapshots(bunch_size, node_status)

	

	
DynSIRModel.execute_iterations(node_status)

	

Example

In the code below is shown an example of instantiation and execution of an DynSIR simulation on a dynamic random graph: we set the initial set of infected nodes as 5% of the overall population, a probability of infection of 1%, and a removal probability of 1%.

import networkx as nx
import dynetx as dn
import ndlib.models.ModelConfig as mc
import ndlib.models.dynamic.DynSIRModel as sir

Dynamic Network topology
dg = dn.DynGraph()

for t in past.builtins.xrange(0, 3):
 g = nx.erdos_renyi_graph(200, 0.05)
 dg.add_interactions_from(g.edges(), t)

Model selection
model = sir.DynSIRModel(dg)

Model Configuration
config = mc.Configuration()
config.add_model_parameter('beta', 0.01)
config.add_model_parameter('gamma', 0.01)
config.add_model_parameter("percentage_infected", 0.1)
model.set_initial_status(config)

Simulate snapshot based execution
iterations = model.execute_snapshots()

Simulation interaction graph based execution
iterations = model.execute_iterations()

	1

	
	
	Kermack and A. McKendrick, “A Contribution to the Mathematical Theory of Epidemics,” Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, vol. 115, no. 772, pp. 700–721, Aug. 1927

	2

	Letizia Milli, Giulio Rossetti, Fosca Giannotti, Dino Pedreschi. “Diffusive Phenomena in Dynamic Networks: a data-driven study”. Accepted to International Conference on Complex Networks (CompleNet), 2018, Boston.

 Kertesz Threshold

Kertesz Threshold

The Kertesz Threshold model was introduced in 2015 by Ruan et al. 1 and it is an extension of the Watts threshold model 2.

The authors extend the classical model introducing a density r of blocked nodes – nodes which are immune to social influence – and a probability of spontaneous adoption p to capture external influence.

Thus, the model distinguishes three kinds of node: Blocked (B), Susceptible (S) and Adoptiong (A). The latter class breaks into two categories: vulnerable and stable nodes. A node can adopt either under its neighbors’ influence, or spontaneously, due to endogenous effects.

Statuses

During the simulation a node can experience the following statuses:

	Name

	Code

	Susceptible

	0

	Infected

	1

	Blocked

	-1

Parameters

	Name

	Type

	Value Type

	Default

	Mandatory

	Description

	adopter_rate

	Model

	float in [0, 1]

	0

	False

	Exogenous adoption rate

	percentage_blocked

	Model

	float in [0, 1]

	0.1

	False

	Blocked nodes

	threshold

	Node

	float in [0, 1]

	0.1

	False

	Individual threshold

The initial infection status can be defined via:

	percentage_infected: Model Parameter, float in [0, 1]

	Infected: Status Parameter, set of nodes

The initial blocked nodes can be defined via:

	percentage_blocked: Model Parameter, float in [0, 1]

	Blocked: Status Parameter, set of nodes

In both cases, the two options are mutually exclusive and the latter takes precedence over the former.

Methods

The following class methods are made available to configure, describe and execute the simulation:

Configure

	
class ndlib.models.dynamic.DynKerteszThresholdModel.DynKerteszThresholdModel(graph)

	
Node Parameters to be specified via ModelConfig

	Parameters

	profile – The node profile. As default a value of 0.1 is assumed for all nodes.

	
DynKerteszThresholdModel.__init__(graph)

	Model Constructor

	Parameters

	graph – A networkx graph object

	
DynKerteszThresholdModel.set_initial_status(self, configuration)

	Set the initial model configuration

	Parameters

	configuration – a `ndlib.models.ModelConfig.Configuration` object

	
DynKerteszThresholdModel.reset(self)

	Reset the simulation setting the actual status to the initial configuration.

Describe

	
DynKerteszThresholdModel.get_info(self)

	Describes the current model parameters (nodes, edges, status)

	Returns

	a dictionary containing for each parameter class the values specified during model configuration

	
DynKerteszThresholdModel.get_status_map(self)

	Specify the statuses allowed by the model and their numeric code

	Returns

	a dictionary (status->code)

Execute Simulation

	
DynKerteszThresholdModel.iteration(self)

	Execute a single model iteration

	Returns

	Iteration_id, Incremental node status (dictionary node->status)

	
DynKerteszThresholdModel.execute_snapshots(bunch_size, node_status)

	

	
DynKerteszThresholdModel.execute_iterations(node_status)

	

Example

In the code below is shown an example of instantiation and execution of a Kertesz Threshold model simulation on a random graph: we set the initial infected as well blocked node sets equals to the 10% of the overall population, assign a threshold of 0.25 to all the nodes and impose an probability of spontaneous adoptions of 40%.

import networkx as nx
import dynetx as dn
import ndlib.models.ModelConfig as mc
import ndlib.models.dynamic.DynKerteszThresholdModel as ks

Dynamic Network topology
dg = dn.DynGraph()

for t in past.builtins.xrange(0, 3):
 g = nx.erdos_renyi_graph(200, 0.05)
 dg.add_interactions_from(g.edges(), t)

Model selection
model = ks.DynKerteszThresholdModel(g)

Model Configuration
config = mc.Configuration()
config.add_model_parameter('adopter_rate', 0.4)
config.add_model_parameter('percentage_blocked', 0.1)
config.add_model_parameter('percentage_infected', 0.1)

Setting node parameters
threshold = 0.25
for i in g.nodes():
 config.add_node_configuration("threshold", i, threshold)

model.set_initial_status(config)

Simulate snapshot based execution
iterations = model.execute_snapshots()

Simulation interaction graph based execution
iterations = model.execute_iterations()

	1

	
	Ruan, G. In ̃iguez, M. Karsai, and J. Kertész, “Kinetics of social contagion,” Phys. Rev. Lett., vol. 115, p. 218702, Nov 2015.

	2

	
	
	Watts, “A simple model of global cascades on random networks,” Proceedings of the National Academy of Sciences, vol. 99, no. 9, pp. 5766–5771, 2002.

 Profile

Profile

The Profile model assumes that the diffusion process is only apparent; each node decides to adopt or not a given behavior – once known its existence – only on the basis of its own interests.

In this scenario the peer pressure is completely ruled out from the overall model: it is not important how many of its neighbors have adopted a specific behaviour, if the node does not like it, it will not change its interests.

Each node has its own profile describing how many it is likely to accept a behaviour similar to the one that is currently spreading.

The diffusion process starts from a set of nodes that have already adopted a given behaviour S:

	for each of the susceptible nodes’ in the neighborhood of a node u in S an unbalanced coin is flipped, the unbalance given by the personal profile of the susceptible node;

	if a positive result is obtained the susceptible node will adopt the behaviour, thus becoming infected.

	if the blocked status is enabled, after having rejected the adoption with probability blocked a node becomes immune to the infection.

	every iteration adopter_rate percentage of nodes spontaneous became infected to endogenous effects.

Statuses

During the simulation a node can experience the following statuses:

	Name

	Code

	Susceptible

	0

	Infected

	1

	Blocked

	-1

Parameters

	Name

	Type

	Value Type

	Default

	Mandatory

	Description

	profile

	Node

	float in [0, 1]

	0.1

	False

	Node profile

	blocked

	Model

	float in [0, 1]

	0

	False

	Blocked nodes

	adopter_rate

	Model

	float in [0, 1]

	0

	False

	Autonomous adoption

The initial infection status can be defined via:

	percentage_infected: Model Parameter, float in [0, 1]

	Infected: Status Parameter, set of nodes

The two options are mutually exclusive and the latter takes precedence over the former.

Methods

The following class methods are made available to configure, describe and execute the simulation:

Configure

	
class ndlib.models.dynamic.DynProfileModel.DynProfileModel(graph)

	
Node Parameters to be specified via ModelConfig

	Parameters

	profile – The node profile. As default a value of 0.1 is assumed for all nodes.

	
DynProfileModel.__init__(graph)

	Model Constructor

	Parameters

	graph – A networkx graph object

	
DynProfileModel.set_initial_status(self, configuration)

	Set the initial model configuration

	Parameters

	configuration – a `ndlib.models.ModelConfig.Configuration` object

	
DynProfileModel.reset(self)

	Reset the simulation setting the actual status to the initial configuration.

Describe

	
DynProfileModel.get_info(self)

	Describes the current model parameters (nodes, edges, status)

	Returns

	a dictionary containing for each parameter class the values specified during model configuration

	
DynProfileModel.get_status_map(self)

	Specify the statuses allowed by the model and their numeric code

	Returns

	a dictionary (status->code)

Execute Simulation

	
DynProfileModel.iteration(self)

	Execute a single model iteration

	Returns

	Iteration_id, Incremental node status (dictionary node->status)

	
DynProfileModel.execute_snapshots(bunch_size, node_status)

	

	
DynProfileModel.execute_iterations(node_status)

	

Example

In the code below is shown an example of instantiation and execution of a Profile model simulation on a random graph: we set the initial infected node set to the 10% of the overall population and assign a profile of 0.25 to all the nodes.

import networkx as nx
import dynetx as dn
import ndlib.models.ModelConfig as mc
import ndlib.models.dynamic.DynProfileModel as ks

Dynamic Network topology
dg = dn.DynGraph()

for t in past.builtins.xrange(0, 3):
 g = nx.erdos_renyi_graph(200, 0.05)
 dg.add_interactions_from(g.edges(), t)

Model selection
model = pr.DynProfileModel(g)
config = mc.Configuration()
config.add_model_parameter('blocked', 0)
config.add_model_parameter('adopter_rate', 0)
config.add_model_parameter('percentage_infected', 0.1)

Setting nodes parameters
profile = 0.15
for i in g.nodes():
 config.add_node_configuration("profile", i, profile)

model.set_initial_status(config)

Simulate snapshot based execution
iterations = model.execute_snapshots()

Simulation interaction graph based execution
iterations = model.execute_iterations()

 Threshold

Threshold

The Profile-Threshold model assumes the existence of node profiles that act as preferential schemas for individual tastes but relax the constraints imposed by the Profile model by letting nodes influenceable via peer pressure mechanisms.

The peer pressure is modeled with a threshold.

The diffusion process starts from a set of nodes that have already adopted a given behaviour S:

	for each of the susceptible node an unbalanced coin is flipped if the percentage of its neighbors that are already infected excedes its threhosld. As in the Profile Model the coin unbalance is given by the personal profile of the susceptible node;

	if a positive result is obtained the susceptible node will adopt the behaviour, thus becoming infected.

	if the blocked status is enabled, after having rejected the adoption with probability blocked a node becomes immune to the infection.

	every iteration adopter_rate percentage of nodes spontaneous became infected to endogenous effects.

Statuses

During the simulation a node can experience the following statuses:

	Name

	Code

	Susceptible

	0

	Infected

	1

	Blocked

	-1

Parameters

	Name

	Type

	Value Type

	Default

	Mandatory

	Description

	threshold

	Node

	float in [0, 1]

	0.1

	False

	Individual threshold

	profile

	Node

	float in [0, 1]

	0.1

	False

	Node profile

	blocked

	Model

	float in [0, 1]

	0

	False

	Blocked nodes

	adopter_rate

	Model

	float in [0, 1]

	0

	False

	Autonomous adoption

The initial infection status can be defined via:

	percentage_infected: Model Parameter, float in [0, 1]

	Infected: Status Parameter, set of nodes

The two options are mutually exclusive and the latter takes precedence over the former.

Methods

The following class methods are made available to configure, describe and execute the simulation:

Configure

	
class ndlib.models.dynamic.DynProfileThresholdModel.DynProfileThresholdModel(graph)

	Node Parameters to be specified via ModelConfig

	Parameters

	
	profile – The node profile. As default a value of 0.1 is assumed for all nodes.

	threshold – The node threshold. As default a value of 0.1 is assumed for all nodes.

	
DynProfileThresholdModel.__init__(graph)

	Model Constructor

	Parameters

	graph – A networkx graph object

	
DynProfileThresholdModel.set_initial_status(self, configuration)

	Set the initial model configuration

	Parameters

	configuration – a `ndlib.models.ModelConfig.Configuration` object

	
DynProfileThresholdModel.reset(self)

	Reset the simulation setting the actual status to the initial configuration.

Describe

	
DynProfileThresholdModel.get_info(self)

	Describes the current model parameters (nodes, edges, status)

	Returns

	a dictionary containing for each parameter class the values specified during model configuration

	
DynProfileThresholdModel.get_status_map(self)

	Specify the statuses allowed by the model and their numeric code

	Returns

	a dictionary (status->code)

Execute Simulation

	
DynProfileThresholdModel.iteration(self)

	Execute a single model iteration

	Returns

	Iteration_id, Incremental node status (dictionary node->status)

	
DynProfileThresholdModel.execute_snapshots(bunch_size, node_status)

	

	
DynProfileThresholdModel.execute_iterations(node_status)

	

Example

In the code below is shown an example of instantiation and execution of a Profile Threshold model simulation on a random graph: we set the initial infected node set to the 10% of the overall population, assign a profile of 0.25 and a threshold of 0.15 to all the nodes.

import networkx as nx
import dynetx as dn
import ndlib.models.ModelConfig as mc
import ndlib.models.dynamic.DynProfileThresholdModel as ks

Dynamic Network topology
dg = dn.DynGraph()

for t in past.builtins.xrange(0, 3):
 g = nx.erdos_renyi_graph(200, 0.05)
 dg.add_interactions_from(g.edges(), t)

Model selection
model = pt.DynProfileThresholdModel(g)
config = mc.Configuration()
config.add_model_parameter('blocked', 0)
config.add_model_parameter('adopter_rate', 0)
config.add_model_parameter('percentage_infected', 0.1)

Setting nodes parameters
threshold = 0.15
profile = 0.25
for i in g.nodes():
 config.add_node_configuration("threshold", i, threshold)
 config.add_node_configuration("profile", i, profile)

model.set_initial_status(config)

Simulate snapshot based execution
iterations = model.execute_snapshots()

Simulation interaction graph based execution
iterations = model.execute_iterations()

 ModelConfig

ModelConfig

The ModelConfig object is the common interface used to set up simulation experiments.

	
class ndlib.models.ModelConfig.Configuration

	Configuration Object

It allows to specify four categories of experiment configurations:

	Model configuration

	Node Configuration

	Edge Configuration

	Initial Status

Every diffusion model has its own parameters (as defined in its reference page).

Model Configuration

Model configuration involves the instantiation of both the mandatory and optional parameters of the chosen diffusion model.

	
Configuration.add_model_parameter(self, param_name, param_value)

	Set a Model Parameter

	Parameters

	
	param_name – parameter identifier (as specified by the chosen model)

	param_value – parameter value

Model parameters can be setted as in the following example:

import ndlib.models.ModelConfig as mc

Model Configuration
config = mc.Configuration()
config.add_model_parameter("beta", 0.15)

The only model parameter common to all the diffusive approaches is percentage_infected that allows to specify the ratio of infected nodes at the beginning of the simulation.

Node Configuration

Node configuration involves the instantiation of both the mandatory and optional parameters attached to individual nodes.

	
Configuration.add_node_configuration(self, param_name, node_id, param_value)

	Set a parameter for a given node

	Parameters

	
	param_name – parameter identifier (as specified by the chosen model)

	node_id – node identifier

	param_value – parameter value

	
Configuration.add_node_set_configuration(self, param_name, node_to_value)

	Set Nodes parameter

	Parameters

	
	param_name – parameter identifier (as specified by the chosen model)

	node_to_value – dictionary mapping each node a parameter value

Node parameters can be set as in the following example:

import ndlib.models.ModelConfig as mc

Model Configuration
config = mc.Configuration()

threshold = 0.25
for i in g.nodes():
 config.add_node_configuration("threshold", i, threshold)

Edge Configuration

Edge configuration involves the instantiation of both the mandatory and optional parameters attached to individual edges.

	
Configuration.add_edge_configuration(self, param_name, edge, param_value)

	Set a parameter for a given edge

	Parameters

	
	param_name – parameter identifier (as specified by the chosen model)

	edge – edge identifier

	param_value – parameter value

	
Configuration.add_edge_set_configuration(self, param_name, edge_to_value)

	Set Edges parameter

	Parameters

	
	param_name – parameter identifier (as specified by the chosen model)

	edge_to_value – dictionary mapping each edge a parameter value

Edge parameters can be set as in the following example:

import ndlib.models.ModelConfig as mc

Model Configuration
config = mc.Configuration()

threshold = 0.25
for i in g.nodes():
 config.add_edge_configuration("threshold", i, threshold)

Status Configuration

Status configuration allows to specify explicitly the status of a set of nodes at the beginning of the simulation.

	
Configuration.add_model_initial_configuration(self, status_name, nodes)

	Set initial status for a set of nodes

	Parameters

	
	status_name – status to be set (as specified by the chosen model)

	nodes – list of affected nodes

Node statuses can be set as in the following example:

import ndlib.models.ModelConfig as mc

Model Configuration
config = mc.Configuration()

infected_nodes = [0, 1, 2, 3, 4, 5]
config.add_model_initial_configuration("Infected", infected_nodes)

Explicit status specification takes priority over the percentage specification expressed via model definition (e.g. percentage_infected).

Only the statuses implemented by the chosen model can be used to specify initial configurations of nodes.

 Model Multiple Executions

Model Multiple Executions

dlib.utils.multi_runs allows the parallel execution of multiple instances of a given model starting from different initial infection conditions.

The initial infected nodes for each instance of the model can be specified either:

	by the “percentage_infected” model parameter, or

	explicitly through a list of n sets of nodes (where n is the number of executions required).

In the first scenario “percentage_infected” nodes will be sampled independently for each model execution.

Results of dlib.utils.multi_runs can be feed directly to all the visualization facilities exposed by ndlib.viz.

	
ndlib.utils.multi_runs(model, execution_number, iteration_number, infection_sets, nprocesses)

	Multiple executions of a given model varying the initial set of infected nodes

	Parameters

	
	model – a configured diffusion model

	execution_number – number of instantiations

	iteration_number – number of iterations per execution

	infection_sets – predefined set of infected nodes sets

	nprocesses – number of processes. Default values cpu number.

	Returns

	resulting trends for all the executions

Example

Randomly selection of initial infection sets

import networkx as nx
import ndlib.models.ModelConfig as mc
import ndlib.models.epidemics.SIRModel as sir
from ndlib.utils import multi_runs

Network topology
g = nx.erdos_renyi_graph(1000, 0.1)

Model selection
model1 = sir.SIRModel(g)

Model Configuration
config = mc.Configuration()
config.add_model_parameter('beta', 0.001)
config.add_model_parameter('gamma', 0.01)
config.add_model_parameter("percentage_infected", 0.05)
model1.set_initial_status(config)

Simulation multiple execution
trends = multi_runs(model1, execution_number=10, iteration_number=100, infection_sets=None, nprocesses=4)

Specify initial infection sets

import networkx as nx
import ndlib.models.ModelConfig as mc
import ndlib.models.epidemics.SIRModel as sir
from ndlib.utils import multi_runs

Network topology
g = nx.erdos_renyi_graph(1000, 0.1)

Model selection
model1 = sir.SIRModel(g)

Model Configuration
config = mc.Configuration()
config.add_model_parameter('beta', 0.001)
config.add_model_parameter('gamma', 0.01)
model1.set_initial_status(config)

Simulation multiple execution
infection_sets = [(1, 2, 3, 4, 5), (3, 23, 22, 54, 2), (98, 2, 12, 26, 3), (4, 6, 9)]
trends = multi_runs(model1, execution_number=2, iteration_number=100, infection_sets=infection_sets, nprocesses=4)

Plot multiple executions

The ndlib.viz.mpl package offers support for visualization of multiple runs.

In order to visualize the average trend/prevalence along with its inter-percentile range use the following pattern (assuming model1 and trends be the results of the previous code snippet).

from ndlib.viz.mpl.DiffusionTrend import DiffusionTrend
viz = DiffusionTrend(model1, trends)
viz.plot("diffusion.pdf", percentile=90)

where percentile identifies the upper and lower bound (e.g. setting it to 90 implies a range 10-90).

The same pattern can be also applied to comparison plots.

[image: Multiple run visualization]
Multiple run visualization.

 Diffusion Trend

Diffusion Trend

The Diffusion Trend plot compares the trends of all the statuses allowed by the diffusive model tested.

Each trend line describes the variation of the number of nodes for a given status iteration after iteration.

	
class ndlib.viz.mpl.DiffusionTrend.DiffusionTrend(model, trends)

	

	
DiffusionTrend.__init__(model, trends)

	
	Parameters

	
	model – The model object

	trends – The computed simulation trends

	
DiffusionTrend.plot(filename, percentile)

	Generates the plot

	Parameters

	
	filename – Output filename

	percentile – The percentile for the trend variance area

Below is shown an example of Diffusion Trend description and visualization for the SIR model.

import networkx as nx
import ndlib.models.ModelConfig as mc
import ndlib.models.epidemics.SIRModel as sir
from ndlib.viz.mpl.DiffusionTrend import DiffusionTrend

Network topology
g = nx.erdos_renyi_graph(1000, 0.1)

Model selection
model = sir.SIRModel(g)

Model Configuration
cfg = mc.Configuration()
cfg.add_model_parameter('beta', 0.001)
cfg.add_model_parameter('gamma', 0.01)
cfg.add_model_parameter("percentage_infected", 0.01)
model.set_initial_status(cfg)

Simulation execution
iterations = model.iteration_bunch(200)
trends = model.build_trends(iterations)

Visualization
viz = DiffusionTrend(model, trends)
viz.plot("diffusion.pdf")

[image: SIR Diffusion Trend Example]
SIR Diffusion Trend Example.

 Diffusion Prevalence

Diffusion Prevalence

The Diffusion Prevalence plot compares the delta-trends of all the statuses allowed by the diffusive model tested.

Each trend line describes the delta of the number of nodes for a given status iteration after iteration.

	
class ndlib.viz.mpl.DiffusionPrevalence.DiffusionPrevalence(model, trends)

	

	
DiffusionPrevalence.__init__(model, trends)

	
	Parameters

	
	model – The model object

	trends – The computed simulation iterations

	
DiffusionPrevalence.plot(filename, percentile)

	Generates the plot

	Parameters

	
	filename – Output filename

	percentile – The percentile for the trend variance area

Below is shown an example of Diffusion Prevalence description and visualization for the SIR model.

import networkx as nx
import ndlib.models.ModelConfig as mc
import ndlib.models.epidemics.SIRModel as sir
from ndlib.viz.mpl.DiffusionPrevalence import DiffusionPrevalence

Network topology
g = nx.erdos_renyi_graph(1000, 0.1)

Model selection
model = sir.SIRModel(g)

Model Configuration
cfg = mc.Configuration()
cfg.add_model_parameter('beta', 0.001)
cfg.add_model_parameter('gamma', 0.01)
cfg.add_model_parameter("percentage_infected", 0.01)
model.set_initial_status(cfg)

Simulation execution
iterations = model.iteration_bunch(200)
trends = model.build_trends(iterations)

Visualization
viz = DiffusionPrevalence(model, trends)
viz.plot("prevalence.pdf")

[image: SIR Diffusion Prevalence Example]
SIR Diffusion Prevalence Example.

 Diffusion Trend Comparison

Diffusion Trend Comparison

The Diffusion Trend Comparison plot compares the trends of all the statuses allowed by the diffusive model tested.

Each trend line describes the variation of the number of nodes for a given status iteration after iteration.

	
class ndlib.viz.mpl.TrendComparison.DiffusionTrendComparison(models, trends, statuses='Infected')

	

	
DiffusionTrendComparison.__init__(models, trends, statuses)

	
	Parameters

	
	models – A list of model object

	trends – A list of computed simulation trends

	statuses – The model statuses for which make the plot. Default [“Infected”].

	
DiffusionTrendComparison.plot(filename, percentile)

	Plot the comparison on file.

	Parameters

	
	filename – the output filename

	percentile – The percentile for the trend variance area. Default 90.

Below is shown an example of Diffusion Trend description and visualization for the SIR model.

import networkx as nx
import ndlib.models.ModelConfig as mc
import ndlib.models.epidemics.SIRModel as sir
from ndlib.viz.mpl.TrendComparison import DiffusionTrendComparison

Network topology
g = nx.erdos_renyi_graph(1000, 0.1)

Model selection
model = sir.SIRModel(g)

Model Configuration
cfg = mc.Configuration()
cfg.add_model_parameter('beta', 0.001)
cfg.add_model_parameter('gamma', 0.01)
cfg.add_model_parameter("percentage_infected", 0.01)
model.set_initial_status(cfg)

Simulation execution
iterations = model.iteration_bunch(200)
trends = model.build_trends(iterations)

2° Model selection
model1 = sir.SIRModel(g)

2° Model Configuration
cfg = mc.Configuration()
cfg.add_model_parameter('beta', 0.001)
cfg.add_model_parameter('gamma', 0.02)
cfg.add_model_parameter("percentage_infected", 0.01)
model1.set_initial_status(cfg)

2° Simulation execution
iterations = model1.iteration_bunch(200)
trends1 = model1.build_trends(iterations)

Visualization
viz = DiffusionTrend([model, model1], [trends, trends1])
viz.plot("trend_comparison.pdf")

[image: SIR-SI Diffusion Trend Comparison Example]
SIR-SI Diffusion Trend Comparison Example.

 Diffusion Prevalence Comparison

Diffusion Prevalence Comparison

The Diffusion Prevalence plot compares the delta-trends of all the statuses allowed by the diffusive model tested.

Each trend line describes the delta of the number of nodes for a given status iteration after iteration.

	
class ndlib.viz.mpl.PrevalenceComparison.DiffusionPrevalenceComparison(models, trends, statuses='Infected')

	

	
DiffusionPrevalenceComparison.__init__(model, trends)

	
	Parameters

	
	models – A list of model object

	trends – A list of computed simulation trends

	statuses – The model statuses for which make the plot. Default [“Infected”].

	
DiffusionPrevalenceComparison.plot(filename, percentile)

	Plot the comparison on file.

	Parameters

	
	filename – the output filename

	percentile – The percentile for the trend variance area. Default 90.

Below is shown an example of Diffusion Prevalence description and visualization for two instances of the SIR model.

import networkx as nx
import ndlib.models.ModelConfig as mc
import ndlib.models.epidemics.SIRModel as sir
import ndlib.models.epidemics.SIModel as si
from ndlib.viz.mpl.PrevalenceComparison import DiffusionPrevalenceComparison

Network topology
g = nx.erdos_renyi_graph(1000, 0.1)

Model selection
model = sir.SIRModel(g)

Model Configuration
cfg = mc.Configuration()
cfg.add_model_parameter('beta', 0.001)
cfg.add_model_parameter('gamma', 0.02)
cfg.add_model_parameter("percentage_infected", 0.01)
model.set_initial_status(cfg)

Simulation execution
iterations = model.iteration_bunch(200)
trends = model.build_trends(iterations)

2° Model selection
model1 = si.SIModel(g)

2° Model Configuration
cfg = mc.Configuration()
cfg.add_model_parameter('beta', 0.001)
cfg.add_model_parameter("percentage_infected", 0.01)
model1.set_initial_status(cfg)

2° Simulation execution
iterations = model1.iteration_bunch(200)
trends1 = model1.build_trends(iterations)

Visualization
viz = DiffusionPrevalenceComparison([model, model1], [trends, trends1])
viz.plot("trend_comparison.pdf")

[image: SIR-SI Diffusion Prevalence Comparison Example]
SIR-SI Diffusion Prevalence Comparison Example.

 Diffusion Trend

Diffusion Trend

The Diffusion Trend plot compares the trends of all the statuses allowed by the diffusive model tested.

Each trend line describes the variation of the number of nodes for a given status iteration after iteration.

Below is shown an example of Diffusion Trend description and visualization for the SIR model.

import networkx as nx
from bokeh.io import show
import ndlib.models.ModelConfig as mc
import ndlib.models.epidemics.SIRModel as sir
from ndlib.viz.bokeh.DiffusionTrend import DiffusionTrend

Network topology
g = nx.erdos_renyi_graph(1000, 0.1)

Model selection
model = sir.SIRModel(g)

Model Configuration
cfg = mc.Configuration()
cfg.add_model_parameter('beta', 0.001)
cfg.add_model_parameter('gamma', 0.01)
cfg.add_model_parameter("percentage_infected", 16 0.05)
model.set_initial_status(cfg)

Simulation execution
iterations = model.iteration_bunch(200)
trends = model.build_trends(iterations)

Visualization
viz = DiffusionTrend(model, trends)
p = viz.plot(width=400, height=400)
show(p)

[image: SIR Diffusion Trend Example]
SIR Diffusion Trend Example.

 Diffusion Prevalence

Diffusion Prevalence

The Diffusion Prevalence plot compares the delta-trends of all the statuses allowed by the diffusive model tested.

Each trend line describes the delta of the number of nodes for a given status iteration after iteration.

Below is shown an example of Diffusion Prevalence description and visualization for the SIR model.

import networkx as nx
from bokeh.io import show
import ndlib.models.ModelConfig as mc
import ndlib.models.epidemics.SIRModel as sir
from ndlib.viz.bokeh.DiffusionPrevalence import DiffusionPrevalence

Network topology
g = nx.erdos_renyi_graph(1000, 0.1)

Model selection
model = sir.SIRModel(g)

Model Configuration
cfg = mc.Configuration()
cfg.add_model_parameter('beta', 0.001)
cfg.add_model_parameter('gamma', 0.01)
cfg.add_model_parameter("percentage_infected", 16 0.05)
model.set_initial_status(cfg)

Simulation execution
iterations = model.iteration_bunch(200)
trends = model.build_trends(iterations)

Visualization
viz = DiffusionPrevalence(model, trends)
p = viz.plot(width=400, height=400)
show(p)

[image: SIR Diffusion Prevalence Example]
SIR Diffusion Prevalence Example.

 Multi Plot

Multi Plot

The Multi Plot object allows the generation of composite grid figures composed by multiple Diffusion Trends and/or Diffusion Prevalence plots.

import networkx as nx
from bokeh.io import show
import ndlib.models.ModelConfig as mc
import ndlib.models.epidemics.SIRModel as sir
from ndlib.viz.bokeh.DiffusionTrend import DiffusionTrend
from ndlib.viz.bokeh.DiffusionPrevalence import DiffusionPrevalence
from ndlib.viz.bokeh.MultiPlot import Multiplot

vm = MultiPlot()

Network topology
g = nx.erdos_renyi_graph(1000, 0.1)

Model selection
model = sir.SIRModel(g)

Model Configuration
cfg = mc.Configuration()
cfg.add_model_parameter('beta', 0.001)
cfg.add_model_parameter('gamma', 0.01)
cfg.add_model_parameter("percentage_infected", 16 0.05)
model.set_initial_status(cfg)

Simulation execution
iterations = model.iteration_bunch(200)
trends = model.build_trends(iterations)

Diffusion Trend
viz = DiffusionTrend(model, trends)
p = viz.plot(width=400, height=400)
vm.add_plot(p)

Diffusion Prevalence
viz = DiffusionPrevalence(model, trends)
p1 = viz.plot(width=400, height=400)

vm.add_plot(p1)

m = vm.plot(ncol=2)
show(m)

 Custom Model Definition

Custom Model Definition

NDlib exposes a set of built-in diffusion models (epidemic/opinion dynamics/dynamic network): how can I describe novel ones?

In order to answer such question we developed a syntax for compositional model definition.

Rationale

At a higher level of abstraction a diffusion process can be synthesized into two components:

	Available Statuses, and

	Transition Rules that connect them

All models of NDlib assume an agent-based, discrete time, simulation engine.
During each simulation iteration all the nodes in the network are asked to (i) evaluate their current status and to (ii) (eventually) apply a matching transition rule.
The last step of such process can be easily decomposed into atomic operations that we will call compartments.

Note

NDlib exposes two classes for defining custom diffusion models:

	CompositeModel describes diffusion models for static networks

	DynamicCompositeModel describes diffusion models for dynamic networks

To avoid redundant documentation, here we will discuss only the former class, the latter behaving alike.

Compartments

We adopt the concept of compartment to identify all those atomic conditions (i.e. operations) that describe (part of) a transition rule.
The execution of a compartment can return either True (condition satisfied) or False (condition not satisfied).

Indeed, several compartments can be described, each one of them capturing an atomic operation.

To cover the main scenarios we defined three families of compartments as well as some operations to combine them.

Node Compartments

In this class fall all those compartments that evaluate conditions tied to node status/features.
They model stochastic events as well as deterministic ones.

	Node Stochastic

	Node Categorical Attribute

	Node Numerical Attribute

	Node Threshold

Edge Compartments

In this class fall all those compartments that evaluate conditions tied to edge features.
They model stochastic events as well as deterministic ones.

	Edge Stochastic

	Edge Categorical Attribute

	Edge Numerical Attribute

Time Compartments

In this class fall all those compartments that evaluate conditions tied to temporal execution.
They can be used to model, for instance, lagged events as well as triggered transitions.

	Count Down

Compartments Composition

Compartment can be chained in multiple ways so to describe complex transition rules.
In particular, a transition rule can be seen as a tree whose nodes are compartments and edges connections among them.

	The initial node status is evaluated at the root of the tree (the master compartment)

	if the operation described by such compartment is satisfied the conditions of (one of) its child compartments is evaluated

	if a path from the root to one leaf of the tree is completely satisfied the transition rule applies and the node change its status.

Compartments can be combined following two criteria:

	Cascading Composition

	Conditional Composition

A rule can be defined by employing all possible combinations of cascading and conditional compartment composition.

Examples

Here some example of models implemented using compartments.

SIR

import networkx as nx
import ndlib.models.ModelConfig as mc
import ndlib.models.CompositeModel as gc
import ndlib.models.compartments.NodeStochastic as ns

Network generation
g = nx.erdos_renyi_graph(1000, 0.1)

Composite Model instantiation
model = gc.CompositeModel(g)

Model statuses
model.add_status("Susceptible")
model.add_status("Infected")
model.add_status("Removed")

Compartment definition
c1 = ns.NodeStochastic(0.02, triggering_status="Infected")
c2 = ns.NodeStochastic(0.01)

Rule definition
model.add_rule("Susceptible", "Infected", c1)
model.add_rule("Infected", "Removed", c2)

Model initial status configuration
config = mc.Configuration()
config.add_model_parameter('percentage_infected', 0.1)

Simulation execution
model.set_initial_status(config)
iterations = model.iteration_bunch(5)

 Node Stochastic

Node Stochastic

Node Stochastic compartments are used to evaluate stochastic events attached to network nodes.

Consider the transition rule Susceptible->Infected that requires a probability beta to be satisfied.
Such rule can be described by a simple compartment that models Node Stochastic behaviors. Let’s call il NS.

The rule will take as input the initial node status (Susceptible), the final one (Infected) and the NS compartment.
NS will thus require a probability (beta) of activation.

During each rule evaluation, given a node n

	
	if the actual status of n equals the rule initial one

	
	a random value b in [0,1] will be generated

	if b <= beta then NS is considered satisfied and the status of n changes from initial to final.

Moreover, NS allows to specify a triggering status in order to restrain the compartment evaluation to those nodes that:

	match the rule initial state, and

	have at least one neighbors in the triggering status.

Parameters

	Name

	Value Type

	Default

	Mandatory

	Description

	ratio

	float in [0, 1]

	
	True

	Event probability

	triggering_status

	string

	None

	False

	Trigger

Example

In the code below is shown the formulation of a SIR model using NodeStochastic compartments.

The first compartment, c1, is used to implement the transition rule Susceptible->Infected.
It requires a probability threshold - here set equals to 0.02 - and restrain the rule evaluation to all those nodes that have at least an Infected neighbors.

The second compartment, c2, is used to implement the transition rule Infected->Removed.
Since such transition is not tied to neighbors statuses the only parameter required by the compartment is the probability of transition.

import networkx as nx
import ndlib.models.ModelConfig as mc
import ndlib.models.CompositeModel as gc
import ndlib.models.compartments.NodeStochastic as ns

Network generation
g = nx.erdos_renyi_graph(1000, 0.1)

Composite Model instantiation
model = gc.CompositeModel(g)

Model statuses
model.add_status("Susceptible")
model.add_status("Infected")
model.add_status("Removed")

Compartment definition
c1 = ns.NodeStochastic(0.02, triggering_status="Infected")
c2 = ns.NodeStochastic(0.01)

Rule definition
model.add_rule("Susceptible", "Infected", c1)
model.add_rule("Infected", "Removed", c2)

Model initial status configuration
config = mc.Configuration()
config.add_model_parameter('percentage_infected', 0.1)

Simulation execution
model.set_initial_status(config)
iterations = model.iteration_bunch(100)

 Node Categorical Attribute

Node Categorical Attribute

Node Categorical Attribute compartments are used to evaluate events attached to network nodes attributes.

Consider the transition rule Susceptible->Infected that requires a that the susceptible node express a specific value of an internal attribute, attr, to be satisfied (e.g. “Sex”=”male”).
Such rule can be described by a simple compartment that models Node Categorical Attribute selection. Let’s call il NCA.

The rule will take as input the initial node status (Susceptible), the final one (Infected) and the NCA compartment.
NCA will thus require a probability (beta) of activation.

During each rule evaluation, given a node n

	
	if the actual status of n equals the rule initial one

	
	a random value b in [0,1] will be generated

	if b <= beta and attr(n) == attr, then NCA is considered satisfied and the status of n changes from initial to final.

Parameters

	Name

	Value Type

	Default

	Mandatory

	Description

	attribute

	string

	None

	True

	Attribute name

	value

	string

	None

	True

	Attribute testing value

	probability

	float in [0, 1]

	1

	False

	Event probability

Example

In the code below is shown the formulation of a model using NodeCategoricalAttribute compartments.

The compartment, c1, is used to implement the transition rule Susceptible->Infected.
It restrain the rule evaluation to all those nodes for which the attribute “Sex” equals “male”.

import networkx as nx
import random
import ndlib.models.ModelConfig as mc
import ndlib.models.CompositeModel as gc
import ndlib.models.compartments.NodeCategoricalAttribute as ns

Network generation
g = nx.erdos_renyi_graph(1000, 0.1)

Setting node attribute
attr = {n: {"Sex": random.choice(['male', 'female'])} for n in g.nodes()}
nx.set_node_attributes(g, attr)

Composite Model instantiation
model = gc.CompositeModel(g)

Model statuses
model.add_status("Susceptible")
model.add_status("Infected")
model.add_status("Removed")

Compartment definition
c1 = na.NodeCategoricalAttribute("Sex", "male", probability=0.6)

Rule definition
model.add_rule("Susceptible", "Infected", c1)

Model initial status configuration
config = mc.Configuration()
config.add_model_parameter('percentage_infected', 0)

Simulation execution
model.set_initial_status(config)
iterations = model.iteration_bunch(100)

 Node Numerical Attribute

Node Numerical Attribute

Node Numerical Attribute compartments are used to evaluate events attached to numeric edge attributes.

Consider the transition rule Susceptible->Infected that requires a that the susceptible node express a specific value
of an internal numeric attribute, attr, to be satisfied (e.g. “Age” == 18).
Such rule can be described by a simple compartment that models Node Numerical Attribute selection. Let’s call il NNA.

The rule will take as input the initial node status (Susceptible), the final one (Infected) and the NNA compartment.
NNA will thus require a probability (beta) of activation.

During each rule evaluation, given a node n and one of its neighbors m

	
	if the actual status of n equals the rule initial

	
	if attr(n) op attr

	a random value b in [0,1] will be generated

	if b <= beta, then NNA is considered satisfied and the status of n changes from initial to final.

op represent a logic operator and can assume one of the following values:
- equality: “==”
- less than: “<”
- greater than: “>”
- equal or less than: “<=”
- equal or greater than: “>=”
- not equal to: “!=”
- within: “IN”

Moreover, NNA allows to specify a triggering status in order to restrain the compartment evaluation to those nodes that:

	match the rule initial state, and

	have at least one neighbors in the triggering status.

Parameters

	Name

	Value Type

	Default

	Mandatory

	Description

	attribute

	string

	None

	True

	Attribute name

	value

	numeric(*)

	None

	True

	Attribute testing value

	op

	string

	None

	True

	Logic operator

	probability

	float in [0, 1]

	1

	False

	Event probability

	triggering_status

	string

	None

	False

	Trigger

(*) When op equals “IN” the attribute value is expected to be a tuple of two elements identifying a closed interval.

Example

In the code below is shown the formulation of a model using NodeNumericalAttribute compartments.

The first compartment, c1, is used to implement the transition rule Susceptible->Infected.
It restrain the rule evaluation to all those nodes having “Age” equals to 18.

The second compartment, c2, is used to implement the transition rule Infected->Recovered.
It restrain the rule evaluation to all those nodes connected at least to a “Susceptible” neighbor and having “Age” in the range [20, 25].

import networkx as nx
import random
import ndlib.models.ModelConfig as mc
import ndlib.models.CompositeModel as gc
import ndlib.models.compartments.NodeNumericalAttribute as ns

Network generation
g = nx.erdos_renyi_graph(1000, 0.1)

Setting edge attribute
attr = {n: {"Age": random.choice(range(0, 100))} for n in g.nodes()}
nx.set_edge_attributes(g, attr)

Composite Model instantiation
model = gc.CompositeModel(g)

Model statuses
model.add_status("Susceptible")
model.add_status("Infected")
model.add_status("Removed")

Compartment definition
c1 = na.NodeNumericalAttribute("Age", value=18, op="==", probability=0.6)
c2 = na.NodeNumericalAttribute("Age", value=(20, 25), op="IN", probability=0.6, triggering_status="Susceptible")

Rule definition
model.add_rule("Susceptible", "Infected", c1)
model.add_rule("Infected", "Recovered", c2)

Model initial status configuration
config = mc.Configuration()
config.add_model_parameter('percentage_infected', 0)

Simulation execution
model.set_initial_status(config)
iterations = model.iteration_bunch(100)

 Node Threshold

Node Threshold

Node Threshold compartments are used to evaluate deterministic events attached to network nodes.

Consider the transition rule Susceptible->Infected that requires at least a percentage beta of
Infected neighbors for a node n to be satisfied.

Such rule can be described by a simple compartment that models Node Threshold behaviors. Let’s call il NT.

The rule will take as input the initial node status (Susceptible), the final one (Infected) and the NT compartment.
NT will thus require a threshold (beta) of activation and a triggering status.

During each rule evaluation, given a node n

	
	if the actual status of n equals the rule initial one

	
	let b identify the ratio of n neighbors in the triggering status

	if b >= beta then NS is considered satisfied and the status of n changes from initial to final.

Parameters

	Name

	Value Type

	Default

	Mandatory

	Description

	threshold

	float in [0, 1]

	
	False

	Node threshold

	triggering_status

	string

	None

	True

	Trigger

Example

In the code below is shown the formulation of a Threshold model using NodeThreshold compartments.

The compartment, c1, is used to implement the transition rule Susceptible->Infected.
It requires a threshold - here set equals to 0.2.

import networkx as nx
import ndlib.models.ModelConfig as mc
import ndlib.models.CompositeModel as gc
import ndlib.models.compartments.NodeThreshold as ns

Network generation
g = nx.erdos_renyi_graph(1000, 0.1)

Composite Model instantiation
model = gc.CompositeModel(g)

Model statuses
model.add_status("Susceptible")
model.add_status("Infected")

Compartment definition
c1 = ns.NodeThreshold(0.1, triggering_status="Infected")

Rule definition
model.add_rule("Susceptible", "Infected", c1)

Model initial status configuration
config = mc.Configuration()
config.add_model_parameter('percentage_infected', 0.1)

Simulation execution
model.set_initial_status(config)
iterations = model.iteration_bunch(100)

In case of an heterogeneous node threshold distribution the same model can be expressed as follows

import networkx as nx
import ndlib.models.ModelConfig as mc
import ndlib.models.CompositeModel as gc
import ndlib.models.compartments.NodeThreshold as ns

Network generation
g = nx.erdos_renyi_graph(1000, 0.1)

Composite Model instantiation
model = gc.CompositeModel(g)

Model statuses
model.add_status("Susceptible")
model.add_status("Infected")

Compartment definition
c1 = ns.NodeThreshold(triggering_status="Infected")

Rule definition
model.add_rule("Susceptible", "Infected", c1)

Model initial status configuration
config = mc.Configuration()

Threshold specs
for i in g.nodes():
 config.add_node_configuration("threshold", i, np.random.random_sample())

config = mc.Configuration()
config.add_model_parameter('percentage_infected', 0.1)

Simulation execution
model.set_initial_status(config)
iterations = model.iteration_bunch(100)

 Edge Stochastic

Edge Stochastic

Edge Stochastic compartments are used to evaluate stochastic events attached to network edges.

Consider the transition rule Susceptible->Infected that, to be triggered, requires a direct link among an infected node and a susceptible one.
Moreover, it can happens subject to probability beta, a parameter tied to the specific edge connecting the two nodes.
Such rule can be described by a simple compartment that models Edge Stochastic behaviors. Let’s call il ES.

The rule will take as input the initial node status (Susceptible), the final one (Infected) and the ES compartment.
ES will thus require a probability (beta) of edge activation and a triggering status.
In advanced scenarios, where the probability threshold vary from edge to edge, it is possible to specify it using the model configuration object.

During each rule evaluation, given a node n and one of its neighbors m

	
	if the actual status of n equals the rule initial one and the one of m equals the triggering one

	
	a random value b in [0,1] will be generated

	if b <= beta then ES is considered satisfied and the status of n changes from initial to final.

Parameters

	Name

	Value Type

	Default

	Mandatory

	Description

	threshold

	float in [0, 1]

	1/N

	True

	Event probability

	triggering_status

	string

	None

	False

	Trigger

Where N is the number of nodes in the graph.

Example

In the code below is shown the formulation of a Cascade model using EdgeStochastic compartments.

The compartment, c1, is used to implement the transition rule Susceptible->Infected.
It requires a probability threshold - here set equals to 0.02 - and restrain the rule evaluation to all those nodes that have at least an Infected neighbors.

import networkx as nx
import ndlib.models.ModelConfig as mc
import ndlib.models.CompositeModel as gc
import ndlib.models.compartments.EdgeStochastic as es

Network generation
g = nx.erdos_renyi_graph(1000, 0.1)

Composite Model instantiation
model = gc.CompositeModel(g)

Model statuses
model.add_status("Susceptible")
model.add_status("Infected")
model.add_status("Removed")

Compartment definition
c1 = ns.EdgeStochastic(0.02, triggering_status="Infected")

Rule definition
model.add_rule("Susceptible", "Infected", c1)

Model initial status configuration
config = mc.Configuration()
config.add_model_parameter('percentage_infected', 0.1)

Simulation execution
model.set_initial_status(config)
iterations = model.iteration_bunch(100)

In case of an heterogeneous edge threshold distribution the same model can be expressed as follows

import networkx as nx
import ndlib.models.ModelConfig as mc
import ndlib.models.CompositeModel as gc
import ndlib.models.compartments.EdgeStochastic as es

Network generation
g = nx.erdos_renyi_graph(1000, 0.1)

Composite Model instantiation
model = gc.CompositeModel(g)

Model statuses
model.add_status("Susceptible")
model.add_status("Infected")
model.add_status("Removed")

Compartment definition
c1 = es.EdgeStochastic(triggering_status="Infected")

Rule definition
model.add_rule("Susceptible", "Infected", c1)

Model initial status configuration
config = mc.Configuration()

Threshold specs
for e in g.edges():
 config.add_edge_configuration("threshold", e, np.random.random_sample())

config = mc.Configuration()
config.add_model_parameter('percentage_infected', 0.1)

Simulation execution
model.set_initial_status(config)
iterations = model.iteration_bunch(100)

 Edge Categorical Attribute

Edge Categorical Attribute

Edge Categorical Attribute compartments are used to evaluate events attached to edge attributes.

Consider the transition rule Susceptible->Infected that requires a that the susceptible node is connected to a neighbor
through a link expressing a specific value of an internal attribute, attr, to be satisfied (e.g. “type”=”co-worker”).
Such rule can be described by a simple compartment that models Edge Categorical Attribute selection. Let’s call il ECA.

The rule will take as input the initial node status (Susceptible), the final one (Infected) and the ECA compartment.
ECA will thus require a probability (beta) of activation.

During each rule evaluation, given a node n and one of its neighbors m

	
	if the actual status of n equals the rule initial

	
	if attr(n,m) == attr

	a random value b in [0,1] will be generated

	if b <= beta, then ECA is considered satisfied and the status of n changes from initial to final.

Moreover, ECA allows to specify a triggering status in order to restrain the compartment evaluation to those nodes that:

	match the rule initial state, and

	have at least one neighbors in the triggering status.

Parameters

	Name

	Value Type

	Default

	Mandatory

	Description

	attribute

	string

	None

	True

	Attribute name

	value

	string

	None

	True

	Attribute testing value

	probability

	float in [0, 1]

	1

	False

	Event probability

	triggering_status

	string

	None

	False

	Trigger

Example

In the code below is shown the formulation of a model using EdgeCategoricalAttribute compartments.

The first compartment, c1, is used to implement the transition rule Susceptible->Infected.
It restrain the rule evaluation to all those nodes connected through a link having the attribute “type” equals “co-worker”.

The second compartment, c2, is used to implement the transition rule Infected->Recovered.
It restrain the rule evaluation to all those nodes connected trough a link having the attribute “type” equals “family” whose neighbors is “Susceptible”.

import networkx as nx
import random
import ndlib.models.ModelConfig as mc
import ndlib.models.CompositeModel as gc
import ndlib.models.compartments.EdgeCategoricalAttribute as ns

Network generation
g = nx.erdos_renyi_graph(1000, 0.1)

Setting edge attribute
attr = {e: {"type": random.choice(['co-worker', 'family'])} for e in g.edges()}
nx.set_edge_attributes(g, attr)

Composite Model instantiation
model = gc.CompositeModel(g)

Model statuses
model.add_status("Susceptible")
model.add_status("Infected")
model.add_status("Removed")

Compartment definition
c1 = na.NodeCategoricalAttribute("type", "co-worker", probability=0.6)
c2 = na.NodeCategoricalAttribute("type", "family", probability=0.6, triggering_status="Susceptible")

Rule definition
model.add_rule("Susceptible", "Infected", c1)
model.add_rule("Infected", "Recovered", c2)

Model initial status configuration
config = mc.Configuration()
config.add_model_parameter('percentage_infected', 0)

Simulation execution
model.set_initial_status(config)
iterations = model.iteration_bunch(100)

 Edge Numerical Attribute

Edge Numerical Attribute

Edge Numerical Attribute compartments are used to evaluate events attached to numeric edge attributes.

Consider the transition rule Susceptible->Infected that requires a that the susceptible node is connected to a neighbor
through a link expressing a specific value of an internal numeric attribute, attr, to be satisfied (e.g. “weight”>=3).
Such rule can be described by a simple compartment that models Edge Numerical Attribute selection. Let’s call il ENA.

The rule will take as input the initial node status (Susceptible), the final one (Infected) and the ENA compartment.
ENA will thus require a probability (beta) of activation.

During each rule evaluation, given a node n and one of its neighbors m

	
	if the actual status of n equals the rule initial

	
	if attr(n,m) op attr

	a random value b in [0,1] will be generated

	if b <= beta, then ECA is considered satisfied and the status of n changes from initial to final.

op represent a logic operator and can assume one of the following values:
- equality: “==”
- less than: “<”
- greater than: “>”
- equal or less than: “<=”
- equal or greater than: “>=”
- not equal to: “!=”
- within: “IN”

Moreover, ENA allows to specify a triggering status in order to restrain the compartment evaluation to those nodes that:

	match the rule initial state, and

	have at least one neighbors in the triggering status.

Parameters

	Name

	Value Type

	Default

	Mandatory

	Description

	attribute

	string

	None

	True

	Attribute name

	value

	numeric(*)

	None

	True

	Attribute testing value

	op

	string

	None

	True

	Logic operator

	probability

	float in [0, 1]

	1

	False

	Event probability

	triggering_status

	string

	None

	False

	Trigger

(*) When op equals “IN” the attribute value is expected to be a tuple of two elements identifying a closed interval.

Example

In the code below is shown the formulation of a model using EdgeNumericalAttribute compartments.

The first compartment, c1, is used to implement the transition rule Susceptible->Infected.
It restrain the rule evaluation to all those nodes connected at least to a neighbor through a link having “weight” equals to 4.

The second compartment, c2, is used to implement the transition rule Infected->Recovered.
It restrain the rule evaluation to all those nodes connected at least to a “Susceptible” neighbor through a link having “weight” in the range [3, 6].

import networkx as nx
import random
import ndlib.models.ModelConfig as mc
import ndlib.models.CompositeModel as gc
import ndlib.models.compartments.EdgeNumericalAttribute as ns

Network generation
g = nx.erdos_renyi_graph(1000, 0.1)

Setting edge attribute
attr = {(u, v): {"weight": int((u+v) % 10)} for (u, v) in g.edges()}
nx.set_edge_attributes(g, attr)

Composite Model instantiation
model = gc.CompositeModel(g)

Model statuses
model.add_status("Susceptible")
model.add_status("Infected")
model.add_status("Removed")

Compartment definition
c1 = na.EdgeNumericalAttribute("weight", value=4, op="==", probability=0.6)
c2 = na.EdgeNumericalAttribute("weight", value=(3, 6), op="IN", probability=0.6, triggering_status="Susceptible")

Rule definition
model.add_rule("Susceptible", "Infected", c1)
model.add_rule("Infected", "Recovered", c2)

Model initial status configuration
config = mc.Configuration()
config.add_model_parameter('percentage_infected', 0)

Simulation execution
model.set_initial_status(config)
iterations = model.iteration_bunch(100)

 Count Down

Count Down

Count Down compartments are used to evaluate time related deterministic events attached to network nodes.

Consider the transition rule Susceptible->Infected that has an incubation period of t iterations.

Such rule can be described by a simple compartment that models Count Down behaviors. Let’s call il CD.

The rule will take as input the initial node status (Susceptible), the final one (Infected) and the CD compartment.
CD will thus require a countdown name (cn) and the number of iterations (t) before activation.

During each rule evaluation, given a node n

	
	if the actual status of n equals the rule initial one

	
	if the node does not have an associated countdown cn initialize it to t

	
	else

	
	if cn(t) > t decrement cn(t)

	if cn(t) <= t then CD is considered satisfied and the status of n changes from initial to final.

Parameters

	Name

	Value Type

	Default

	Mandatory

	Description

	name

	string

	None

	True

	Count Down name

	iterations

	int

	None

	True

	Duration

Example

In the code below is shown the formulation of a model using CountDown compartments.

The compartment, c1, is used to implement the transition rule Susceptible->Infected.
It requires activates after 10 iteration.

import networkx as nx
import ndlib.models.ModelConfig as mc
import ndlib.models.CompositeModel as gc
import ndlib.models.compartments.CountDown as cd

Network generation
g = nx.erdos_renyi_graph(1000, 0.1)

Composite Model instantiation
model = gc.CompositeModel(g)

Model statuses
model.add_status("Susceptible")
model.add_status("Infected")

Compartment definition
c1 = cd.CountDown("incubation", iterations=10)

Rule definition
model.add_rule("Susceptible", "Infected", c1)

Model initial status configuration
config = mc.Configuration()
config.add_model_parameter('percentage_infected', 0.1)

Simulation execution
model.set_initial_status(config)
iterations = model.iteration_bunch(100)

 Cascading Composition

Cascading Composition

Since each compartment identifies an atomic condition it is natural to imagine rules described as chains of compartments.

A compartment chain identify and ordered set of conditions that needs to be satisfied to allow status transition (it allows describing an AND logic).

To implement such behaviour each compartment exposes a parameter (named composed) that allows to specify the subsequent compartment to evaluate in case it condition is satisfied.

Example

In the code below is shown the formulation of a model implementing cascading compartment composition.

The rule Susceptible->Infected is implemented using three NodeStochastic compartments chained as follows:

	
	If the node n is Susceptible

	
	c1: if at least a neighbor of the actual node is Infected, with probability 0.5 evaluate compartment c2

	c2: with probability 0.4 evaluate compartment c3

	c3: with probability 0.2 allow the transition to the Infected state

Indeed, heterogeneous compartment types can be mixed to build more complex scenarios.

import networkx as nx
import ndlib.models.ModelConfig as mc
import ndlib.models.CompositeModel as gc
import ndlib.models.compartments.NodeStochastic as ns

Network generation
g = nx.erdos_renyi_graph(1000, 0.1)

Composite Model instantiation
model = gc.CompositeModel(g)

Model statuses
model.add_status("Susceptible")
model.add_status("Infected")

Compartment definition and chain construction
c3 = ns.NodeStochastic(0.2)
c2 = ns.NodeStochastic(0.4, composed=c3)
c1 = ns.NodeStochastic(0.5, "Infected", composed=c2)

Rule definition
model.add_rule("Susceptible", "Infected", c1)

Model initial status configuration
config = mc.Configuration()
config.add_model_parameter('percentage_infected', 0.1)

Simulation execution
model.set_initial_status(config)
iterations = model.iteration_bunch(100)

 Conditional Composition

Conditional Composition

Since each compartment identifies an atomic condition it is natural to imagine rules described as trees of compartments.

A compartment tree identify and ordered and disjoint set of conditions that needs to be satisfied to allow status transition (it allows describing an OR logic).

To implement such behaviour we implemented a ConditionalComposition compartment that allows to describe branching. Let’s call it CC.

CC evaluate a guard compartment and, depending from the result it gets evaluate (True or False) move to the evaluation of one of its two child compartments.

Parameters

	Name

	Value Type

	Default

	Mandatory

	Description

	condition

	Compartment

	None

	True

	Guard Compartment

	first_branch

	Compartment

	None

	True

	Positive Compartment

	second_branch

	Compartment

	None

	True

	Negative Compartment

Example

In the code below is shown the formulation of a model implementing conditional compartment composition.

The rule Susceptible->Infected is implemented using three NodeStochastic compartments chained as follows:

	
	If the node n is Susceptible

	
	c1: if at least a neighbor of the actual node is Infected, with probability 0.5 evaluate compartment c2 else evaluate compartment c3

	c2: with probability 0.2 allow the transition to the Infected state

	c3: with probability 0.1 allow the transition to the Infected state

Indeed, heterogeneous compartment types can be mixed to build more complex scenarios.

import networkx as nx
import ndlib.models.ModelConfig as mc
import ndlib.models.CompositeModel as gc
import ndlib.models.compartments.NodeStochastic as ns
import ndlib.models.compartments.ConditionalComposition as cif

Network generation
g = nx.erdos_renyi_graph(1000, 0.1)

Composite Model instantiation
model = gc.CompositeModel(g)

Model statuses
model.add_status("Susceptible")
model.add_status("Infected")

Compartment definition
c1 = ns.NodeStochastic(0.5, "Infected")
c2 = ns.NodeStochastic(0.2)
c3 = ns.NodeStochastic(0.1)

Conditional Composition
cc = cif.ConditionalComposition(c1, c2, c3)

Rule definition
model.add_rule("Susceptible", "Infected", cc)

Model initial status configuration
config = mc.Configuration()
config.add_model_parameter('percentage_infected', 0.1)

Simulation execution
model.set_initial_status(config)
iterations = model.iteration_bunch(100)

 NDQL: Network Diffusion Query Language

NDQL: Network Diffusion Query Language

NDlib aims to an heterogeneous audience composed by technicians as well as analysts.
In order to abstract from the its programming interface we designed a query language to describe diffusion simulations, NDQL.

Rationale

NDQL is built upon the custom model definition facilities offered by NDlib.

It provides a simple, declarative, syntax for describing and executing diffusion simulations by

	
	creating a custom model composed of

	
	node statuses;

	transition rules (expressed as combinations of compartments)

	creating a synthetic graph / loading an existing network

	initialize initial nodes statuses

	run the simulation

NDQL is designed to allow those users that are not familiar to the Python language to:

	abstract the technicality of the programming interface, and

	directly describe the expected model behaviour

So far, NDQL supports only static network analysis.

NDQL Syntax

An NDQL script is composed of a minimum set of directives:

	
	Model definition:

	
	MODEL, STATUS, COMPARTMENT (+), IF-THEN-ELSE (+), RULE,

	
	Model initialization:

	
	INITIALIZE

	
	Network specification:

	
	CREATE_NETWORK ($), LOAD_NETWORK ($)

	
	Simulation execution:

	
	EXECUTE

Directives marked with (+) are optional while the ones marked with ($) are mutually exclusive w.r.t. their class.

The complete language directive specification is the following:

MODEL model_name

STATUS status_name

COMPARTMENT compartment_name
TYPE compartment_type
COMPOSE compartment_name
[PARAM param_name numeric]*
[TRIGGER status_name]

IF compartment_name_1 THEN compartment_name_2 ELSE compartment_name_3 AS rule_name

RULE rule_name
FROM status_name
TO status_name
USING compartment_name

INITIALIZE
[SET status_name ratio]+

CREATE_NETWORK network_name
TYPE network_type
[PARAM param_name numeric]*

LOAD_NETWORK network_name FROM network_file

EXECUTE model_name ON network_name FOR iterations

The CREATE_NETWORK directive can take as network_type any networkx graph generator name (param_name are inherited from generator function parameters).

Execute/Translate NDQL files

NDlib installs two command line commands:
- NDQL_translate
- NDQL_execute

The former command allows to translate a generic, well-formed, NDQL script into an equivalent Python one. It can be executed as

NDQL_translate query_file python_file

where query_file identifies the target NDQL script and python_file specifies the desired name for the resulting Python script.

The latter command allows to directly execute a generic, well-formed, NDQL script.It can be executed as

NDQL_execute query_file result_file

where query_file identifies the target NDQL script and result_file specifies the desired name for the execution results.
Execution results are saved as JSON files with the following syntax:

[{"trends":
 {
 "node_count": {"0": [270, 179, 15, 0, 0], "1": [30, 116, 273, 256, 239], "2": [0, 5, 12, 44, 61]},
 "status_delta": {"0": [0, -91, -164, -15, 0], "1": [0, 86, 157, -17, -17], "2": [0, 5, 7, 32, 17]}
 },
 "Statuses": {"1": "Infected", "2": "Removed", "0": "Susceptible"}
 }]

where
- node_count describe the trends built on the number of nodes per status
- status_delta describe the trends built on the fluctuations of number of nodes per status
- Statuses provides a map from numerical id to status name

Examples

Here some example of models implemented using NDQL.

SIR

CREATE_NETWORK g1
TYPE erdos_renyi_graph
PARAM n 300
PARAM p 0.1

MODEL SIR

STATUS Susceptible
STATUS Infected
STATUS Removed

Compartment definitions

COMPARTMENT c1
TYPE NodeStochastic
PARAM rate 0.1
TRIGGER Infected

COMPARTMENT c2
TYPE NodeStochastic
PARAM rate 0.1

Rule definitions

RULE
FROM Susceptible
TO Infected
USING c1

RULE
FROM Infected
TO Removed
USING c2

Model configuration

INITIALIZE
SET Infected 0.1

EXECUTE SIR ON g1 FOR 5

 Experiment Server

Experiment Server

The simulation facilities offered by NDlib are specifically designed for those users that want to run experiments on their local machine.

However, in some scenarios, e.g. due to limited computational resources or to the rising of other particular needs, it may be convenient to separate the machine on which the definition of the experiment is made from the one that actually executes the simulation.

In order to satisfy such needs, we developed a RESTfull service, NDlib-REST, that builds upon NDlib an experiment server queryable through API calls.

[image: REST interactive documentation page]
REST interactive documentation page.

Project Website: https://github.com/GiulioRossetti/ndlib-rest

Rationale

The simulation web service is designed around the concept of experiment.

An experiment, identified by a unique identifier, is composed of two entities:

	a network, and

	one (or more) configured diffusion models.

Experiments are used to keep track of the simulation definition, to return consecutive model iterations to the user and to store - locally on the experiment server - the current status of the diffusion process.

In particular, in order to perform an experiment, a user must:

	Request a token, which univocally identifies the experiment;

	Select or load a network resource;

	Select one, or more, diffusion model(s);

	(optional) Use the advanced configuration facilities to define node/edge parameters;

	Execute the step-by-step simulation;

	(optional) Reset the experiment status, modify the models/network;

	Destroy the experiment.

The last action, involving the destruction of the experiment, is designed to clean the serialization made by the service of the incremental experiment status.

If an experiment is not explicitly destroyed its data is removed, and the associated token invalidated, after a temporal window that can be configured by the service administrator.

NDlib-REST is shipped as a Docker container image so to make it configuration free and easier to setup.
Moreover, the simulation server is, by default, executed within a Gunicorn instance allowing parallel executions of multiple experiments at the same time.

NDlib-REST is built using Flask and offers a standard online documentation page that can also be directly used to test the exposed endpoints both configuring and running experiments.

API Interface

As a standard for REST services, all the calls made to NDlib-REST endpoints generate JSON responses.

The APIs of the simulation service are organized in six categories so to provide a logic separation among all the exposed resources.
In particular, in NDlib-REST are exposed endpoints handling:

	Experiment: endpoints in this category allow to create, destroy, configure, reset and describe experiments;

	Exploratories: endpoints in this category allow to load predefined scenarios (e.g. specific networks/models with explicit initial configuration);

	Resources: endpoints in this category allow to query the system to dynamically discover the endpoints (and their descriptions) defined within the system;

	Networks: endpoints in this category handle a load of network data as well as the generation of synthetic graphs (Barabasi-Albert, Erdos-Renyi, Watts-Strogatz…);

	Models: endpoints in this category expose the NDlib models;

	Iterators: endpoints in this category expose the step-by-step and iteration bunch facilities needed to run the simulation.

The simulation service allows to attach multiple diffusion models to the same experiment, thus both the single iteration and the iteration bunch endpoints expose additional parameters that allow the user to select the models for which the call was invoked.

By default, when such parameter is not specified, all the models are executed and their incremental statuses returned.

A particular class of endpoints is the Exploratories one.
Such endpoints are used to define the access to pre-set diffusion scenarios.
Using such facilities the owner of the simulation server can describe, beforehand, specific scenarios, package them and make them available to the service users.

From an educational point of view such mechanism can be used, for instance, by professors to design emblematic diffusion scenarios (composed by both network and initial node/edge statuses) so to let the students explore their impact on specific models configurations (e.g. to analyze the role of weak-ties and/or community structures).

Installation

The project provides:

	
	The REST service: ndrest.py

	
	Web API docs: http://127.0.0.1:5000/docs

	Unittest: ndlib-rest/service_test

	Python REST client: ndlib-rest/client

REST service setup

Local testing

python ndrest.py

Local testig with multiple workers (using gunicorn [http://gunicorn.org/] web server):

gunicorn -w num_workers -b 127.0.0.1:5000 ndrest:app

In order to change the binding IP/port modify the apidoc.json file.
To update the API page run the command:

apidoc -i ndlib-rest/ -o ndlib-rest/static/docs

Docker Container

The web application is shipped in a Docker [https://www.docker.com/] container.
You can use the Dockerfile to create a new image and run the web application using the gunicorn application server.

To create the Docker image, install Docker on your machine.
To create the image execute the following command from the local copy of the repository

docker build -t [tagname_for_your_image] .

The command create a new image with the specified name. Pay attention to the . a the end of the command.

docker run -d -i -p 5000:5000 [tagname_for_your_image]

This command execute a container with the previous image, bind the local port 5000 to the internal port of the container.
The option -d make the container to run in the background (detached)

To have a list of all active container

docker ps -al

To stop a container

docker stop container_name

Configuration

In ndrest.py are specified limits for graph sizes.

In particular are set the minimum and maximum numbers of nodes (for both generators and loaded networks) as well as the maximum file sizes for upload.

app.config['MAX_CONTENT_LENGTH'] = 50 * 1024 * 1024 # 50MB limit for uploads
max_number_of_nodes = 100000
min_number_of_nodes = 200 # inherited by networkx

	The “complete graph generator” endpoint represents the only exception to the specified lower bound on number of nodes: such model lowers the minimum to 100 nodes. Indeed, the suggested limits can be increased to handle bigger graphs.

	When loading external graphs nodes MUST be identified by integer ids.

 Visual Framework

Visual Framework

NDlib aims to an heterogeneous audience composed by technicians as well as analysts.
In order to abstract from the its programming interface we built a simple visual framework that allows to simulate NDlib built-in models on synthetic graphs.

[image: Framework visual interface]
Visual Framework.

Project Website: https://github.com/rinziv/NDLib-Viz

Rationale

NDlib-Viz aims to make non-technicians able to design, configure and run epidemic simulations, thus removing the barriers introduced by the usual requirements of programming language knowledge.
Indeed, apart from the usual research-oriented audience, we developed NDlib-Viz to support students and facilitate teachers to introduce epidemic models.
The platform itself is a web application: it can be executed on a local as well as on a remote NDlib-REST installation.

Installation

NDlib-Viz requires a local active instance of NDlib-REST to be executed.

install dependencies
npm install

serve with hot reload at localhost:8080
npm run dev

build for production with minification
npm run build

build for production and view the bundle analyzer report
npm run build --report

For detailed explanation on how things work, checkout the guide [http://vuejs-templates.github.io/webpack/] and docs for vue-loader [http://vuejs.github.io/vue-loader].

Architecture

The Visualization Framework is a single-page web application implemented using Javascript and HTML 5.
The decoupling of the simulation engine and the visual interface allows us to exploit modern browsers to provide an efficient environment for visualization of models and interactions.

	The structure and layout of the page are managed with Bootstrap.

	The business logic and visualization of graphical widgets are implemented in D3.js.

	Nodes and edges of the networks are drawn using the Force Layout library provided by the D3 library.

	The network visualization is implemented using Canvas object provided by standard HTML5. This allows a very efficient update of the network view.

	The charts showing the Diffusion Trend and Prevalence are created using NVD3 library.

The Visualization Framework is implemented using a Model-Control-View (MCV) design pattern.
The model is managed by a central component that implements a REST API client that handle the status of the experiment.
When the user interacts with one of the views (charts, network layout, toolbar), the controller notifies the model to update the experiment.
Each interaction with the visual interface is managed by the model component that centralizes all the communications with the REST server.
The calls to the server are executed asynchronously, and the component updates the visual interface as soon as a response arrives from the server.

 Developer Guide

Developer Guide

	Working with NDlib source code
	Introduction

	Install git

	Following the latest source

	Making a patch

	Extend NDlib
	Describe a Diffusion Model

	Describe a Visuzlization

 Working with NDlib source code

Working with NDlib source code

Contents:

	Introduction

	Install git
	Overview

	In detail

	Following the latest source
	Get the local copy of the code

	Updating the code

	Making a patch
	Making patches

 Introduction

Introduction

These pages describe a git and github workflow for the NDlib project.

There are several different workflows here, for different ways of working with NDlib.

This is not a comprehensive git reference, it’s just a workflow for our own project. It’s tailored to the github hosting service. You may well find better or quicker ways of getting stuff done with git, but these should get you started.

For general resources for learning git, see git resources.

 Install git

Install git

Overview

	Debian / Ubuntu

	sudo apt-get install git

	Fedora

	sudo yum install git-core

	Windows

	Download and install msysGit 1

	OS X

	Use the git-osx-installer 2

In detail

See the git page for the most recent information.

Have a look at the github install help pages available from github help 3 .

There are good instructions here: http://book.git-scm.com/2_installing_git.html

	1

	https://git-for-windows.github.io

	2

	https://code.google.com/archive/p/git-osx-installer/downloads

	3

	http://help.github.com/

 Following the latest source

Following the latest source

These are the instructions if you just want to follow the latest
NDlib source, but you don’t need to do any development for now.

The steps are:

	Install git

	get local copy of the ndlib github [http://github.com/GiulioRossetti/ndlib] git repository

	update local copy from time to time

Get the local copy of the code

From the command line:

git clone git://github.com/GiulioRossetti/ndlib.git

You now have a copy of the code tree in the new ndlib directory.

Updating the code

From time to time you may want to pull down the latest code. It is necessary
to add the NDlib repository as a remote to your configuration file. We call it
upstream.

git remote set-url upstream https://github.com/GiulioRossetti/ndlib.git

Now git knows where to fetch updates from.

cd ndlib
git fetch upstream

The tree in ndlib will now have the latest changes from the initial
repository, unless you have made local changes in the meantime. In this case, you have to merge.

git merge upstream/master

It is also possible to update your local fork directly from GitHub:

	Open your fork on GitHub.

	Click on ‘Pull Requests’.

	Click on ‘New Pull Request’. By default, GitHub will compare the original with your fork. If you didn’t make any changes, there is nothing to compare.

	Click on ‘Switching the base’ or click ‘Edit’ and switch the base manually. Now GitHub will compare your fork with the original, and you should see all the latest changes.

	Click on ‘Click to create a pull request for this comparison’ and name your pull request.

	Click on Send pull request.

	Scroll down and click ‘Merge pull request’ and finally ‘Confirm merge’. You will be able to merge it automatically unless you did not change you local repo.

 Making a patch

Making a patch

You’ve discovered a bug or something else you want to change
in ndlib [http://github.com/GiulioRossetti/ndlib] .. - excellent!

You’ve worked out a way to fix it - even better!

You want to tell us about it - best of all!

The easiest way is to make a patch or set of patches. Here
we explain how.

Making patches

Overview

tell git who you are
git config --global user.email you@yourdomain.example.com
git config --global user.name "Your Name Comes Here"
get the repository if you don't have it
git clone git://github.com/GiulioRossetti/ndlib.git
make a branch for your patching
cd networkx
git branch the-fix-im-thinking-of
git checkout the-fix-im-thinking-of
hack, hack, hack
Tell git about any new files you've made
git add somewhere/tests/test_my_bug.py
commit work in progress as you go
git commit -am 'BF - added tests for Funny bug'
hack hack, hack
git commit -am 'BF - added fix for Funny bug'
make the patch files
git format-patch -M -C master

Then, open an issue on the projetc GitHub and attach the generated patch files.

In detail

	Tell git who you are so it can label the commits you’ve
made:

git config --global user.email you@yourdomain.example.com
git config --global user.name "Your Name Comes Here"

	If you don’t already have one, clone a copy of the
ndlib [http://github.com/GiulioRossetti/ndlib] repository:

git clone git://github.com/GiulioRossetti/ndlib.git
cd networkx

	Make a ‘feature branch’. This will be where you work on
your bug fix. It’s nice and safe and leaves you with
access to an unmodified copy of the code in the main
branch:

git branch the-fix-im-thinking-of
git checkout the-fix-im-thinking-of

	Do some edits, and commit them as you go:

hack, hack, hack
Tell git about any new files you've made
git add somewhere/tests/test_my_bug.py
commit work in progress as you go
git commit -am 'BF - added tests for Funny bug'
hack hack, hack
git commit -am 'BF - added fix for Funny bug'

Note the -am options to commit. The m flag just
signals that you’re going to type a message on the command
line.

	When you have finished, check you have committed all your
changes:

git status

	Finally, make your commits into patches. You want all the
commits since you branched from the master branch:

git format-patch -M -C master

You will now have several files named for the commits:

0001-BF-added-tests-for-Funny-bug.patch
0002-BF-added-fix-for-Funny-bug.patch

Attach these files to a novel issue on the project GitHub.

When you are done, to switch back to the main copy of the
code, just return to the master branch:

git checkout master

 Extend NDlib

Extend NDlib

The NDlib library can be extended by adding both models and visualization facilities.

In this section are introduced the basilar concept behind the class model adopted in NDlib and some best practice for the definition of novel models and visualizations.

	Describe a Diffusion Model
	Model Description

	Iteration Rule

	Describe a Visuzlization
	Line Plot Definition

	Data Preparation

 Describe a Diffusion Model

Describe a Diffusion Model

All the diffusion models implemented in NDlib extends the abstract class ndlib.models.DiffusionModel.

	
class ndlib.models.DiffusionModel.DiffusionModel(graph)

	Partial Abstract Class that defines Diffusion Models

Such class implements the logic behind model construction, configuration and execution.

In order to describe a novel diffusion algorithm the following steps must be followed:

Model Description

As convention a new model should be described in a python file named after it, e.g. a MyModule class should be implemented in a MyModule.py file.

	
DiffusionModel.__init__(self, graph)

	Model Constructor

	Parameters

	graph – A networkx graph object

In oder to effectively describe the model the __init__ function of ndlib.models.DiffusionModel must be specified as follows:

from ndlib.models.DiffusionModel import DiffusionModel

class MyModel(DiffusionModel):

 def __init__(self, graph):

 # Call the super class constructor
 super(self.__class__, self).__init__(graph)

 # Method name
 self.name = "MyModel"

 # Available node statuses
 self.available_statuses = {
 "Status_0": 0,
 "Status_1": 1
 }
 # Exposed Parameters
 self.parameters = {
 "model":
 "parameter_name": {
 "descr": "Description 1"
 "range": [0,1],
 "optional": False
 },
 },
 "nodes":
 "node_parameter_name": {
 "descr": "Description 2"
 "range": [0,1],
 "optional": True
 },
 },
 "edges":
 "edge_parameter_name": {
 "descr": "Description 3"
 "range": [0,1],
 "optional": False
 },
 },
 }

In the __init__ methods three components are used to completely specify the model:

	self.name: its name;

	self.available_statuses: the node statuses it allows along with an associated numerical code;

	self.parameters: the parameters it requires, their range, description and optionality.

All those information will be used to check the user provided configurations as well as metadata for visualizations.

Iteration Rule

Once described the model metadata it is necessary to provide the agent-based description of its general iteration-step.

	
DiffusionModel.iteration(self)

	Execute a single model iteration

	Parameters

	node_status – if the incremental node status has to be returned.

	Returns

	Iteration_id,
(optional) Incremental node status (dictionary node->status),
Status count (dictionary status->node count),
Status delta (dictionary status->node delta)

To do so, the iteration() method of the base class has to be overridden in MyModel as follows:

def iteration(self, node_status=True):

 self.clean_initial_status(self.available_statuses.values())

 # if first iteration return the initial node status
 if self.actual_iteration == 0:
 self.actual_iteration += 1
 delta, node_count, status_delta = self.status_delta(actual_status)
 if node_status:
 return {"iteration": 0, "status": actual_status.copy(),
 "node_count": node_count.copy(), "status_delta": status_delta.copy()}
 else:
 return {"iteration": 0, "status": {},
 "node_count": node_count.copy(), "status_delta": status_delta.copy()}

 actual_status = {node: nstatus for node, nstatus in self.status.iteritems()}

 # iteration inner loop
 for u in self.graph.nodes():
 # evluate possible status changes using the model parameters (accessible via self.params)
 # e.g. self.params['beta'], self.param['nodes']['threshold'][u], self.params['edges'][(id_node0, idnode1)]

 # identify the changes w.r.t. previous iteration
 delta, node_count, status_delta = self.status_delta(actual_status)

 # update the actual status and iterative step
 self.status = actual_status
 self.actual_iteration += 1

 # return the actual configuration (only nodes with status updates)
 if node_status:
 return {"iteration": self.actual_iteration - 1, "status": delta.copy(),
 "node_count": node_count.copy(), "status_delta": status_delta.copy()}
 else:
 return {"iteration": self.actual_iteration - 1, "status": {},
 "node_count": node_count.copy(), "status_delta": status_delta.copy()}

The provided template is composed by 4 steps:

	first iteration handling: if present the model returns as result of the first iteration is initial status;

	making a copy of the actual diffusion status;

	iteration loop: definition, and application, of the rules that regulates individual node status transitions;

	construction of the incremental result.

All the steps are mandatory in order to assure a consistent behaviour across different models

All the user specified parameters (models as well as nodes and edges ones) can be used within the iteration() method: to access them an internal data structure is provided, self.params.

self.params is a dictionary that collects all the passed values using the following notation:

	Model parameters: self.params['model']['parameter_name']

	Node parameters: self.param['nodes']['nodes_parameter'][node_id]

	Edge parameters: self.param['edges']['edges_parameter'][(node_id1, node_id2)]

Within the iteration loop the node status updates must be made on the actual_status data structure, e.g. the copy made during Step 1.

Each iteration returns the incremental status of the diffusion process as well as the iteration progressive number.

 Describe a Visuzlization

Describe a Visuzlization

All the matplotlib visualizations implemented so far in NDlib extends the abstract class nndlib.viz.mpl.DiffusionViz.DiffusionPlot.

	
class ndlib.viz.mpl.DiffusionViz.DiffusionPlot(model, trends)

	

Conversely, visualizations that use the bokeh library, should extend the abstract class nndlib.viz.bokeh.DiffusionViz.DiffusionPlot.

Here is introduced the pattern for describing novel matplotlib based visualization, bokeh ones following the same rationale.

So far DiffusionPlot implements the visualization logic only for generic trend line plot built upon simulation iterations and model metadata.

Line Plot Definition

As convention a new visualization should be described in a python file named after it, e.g. a MyViz class should be implemented in a MyViz.py file.

In oder to effectively describe the visualization the __init__ function of ndlib.viz.bokeh.DiffusionViz.DiffusionPlot must be specified as follows:

from ndlib.viz.mpl.DiffusionViz import DiffusionPlot

class MyViz(DiffusionPlot):

 def __init__(self, model, trends):
 super(self.__class__, self).__init__(model, trends)
 self.ylabel = "#Nodes"
 self.title = "Diffusion Trend"

Data Preparation

Once described the plot metadata it is necessary to prepare the data to be visualized through the plot() method.

To do so, the iteration_series(percentile) method of the base class has to be overridden in MyViz.

Such method can access the trend data, as returned by ndlib.models.DiffusionModel.DiffusionModel.build_trends(self, iterations) in self.iterations.

 Bibliography

Bibliography

NDlib was developed for research purposes.

So far it has been used as support to the following publications:

	“NDlib: a Python Library to Model and Analyze Diffusion Processes Over Complex Networks”

	G. Rossetti, L. Milli, S. Rinzivillo, A. Sirbu, D. Pedreschi, F. Giannotti.
International Journal of Data Science and Analytics. 2017.
DOI:0.1007/s41060-017-0086-6 [https://dx.doi.org/10.1007/s41060-017-0086-6]
(pre-print available on arXiv [https://arxiv.org/abs/1801.05854])

	“NDlib: Studying Network Diffusion Dynamics”

	G. Rossetti, L. Milli, S. Rinzivillo, A. Sirbu, D. Pedreschi, F. Giannotti.
IEEE International Conference on Data Science and Advanced Analytics, DSAA. 2017.

	“Information Diffusion in Complex Networks: The Active/Passive Conundrum”

	L. Milli, G. Rossetti, D. Pedreschi, F. Giannotti
International Conference on Complex Networks and their Applications, 2017.
DOI:10.1007/978-3-319-72150-7_25 [https://dx.doi.org/10.1007/978-3-319-72150-7_25]

	“Diffusive Phenomena in Dynamic Networks: a data-driven study”

	L. Milli, G. Rossetti, D. Pedreschi, F. Giannotti.
9th Conference on Complex Networks, CompleNet, 2018.

 Index

Index

 _
 | A
 | C
 | D
 | E
 | G
 | I
 | K
 | M
 | P
 | Q
 | R
 | S
 | T
 | V

_

 	
 	__init__() (ndlib.models.DiffusionModel.DiffusionModel method)

 	(ndlib.models.dynamic.DynKerteszThresholdModel.DynKerteszThresholdModel method)

 	(ndlib.models.dynamic.DynProfileModel.DynProfileModel method)

 	(ndlib.models.dynamic.DynProfileThresholdModel.DynProfileThresholdModel method)

 	(ndlib.models.dynamic.DynSIModel.DynSIModel method)

 	(ndlib.models.dynamic.DynSIRModel.DynSIRModel method)

 	(ndlib.models.dynamic.DynSISModel.DynSISModel method)

 	(ndlib.models.epidemics.GeneralisedThresholdModel.GeneralisedThresholdModel method)

 	(ndlib.models.epidemics.IndependentCascadesModel.IndependentCascadesModel method)

 	(ndlib.models.epidemics.KerteszThresholdModel.KerteszThresholdModel method)

 	(ndlib.models.epidemics.ProfileModel.ProfileModel method)

 	(ndlib.models.epidemics.ProfileThresholdModel.ProfileThresholdModel method)

 	(ndlib.models.epidemics.SEIRModel.SEIRModel method)

 	(ndlib.models.epidemics.SEISModel.SEISModel method)

 	(ndlib.models.epidemics.SIModel.SIModel method)

 	(ndlib.models.epidemics.SIRModel.SIRModel method)

 	(ndlib.models.epidemics.SISModel.SISModel method)

 	(ndlib.models.epidemics.SWIRModel.SWIRModel method)

 	(ndlib.models.epidemics.ThresholdModel.ThresholdModel method)

 	(ndlib.models.opinions.CognitiveOpDynModel.CognitiveOpDynModel method)

 	(ndlib.models.opinions.MajorityRuleModel.MajorityRuleModel method)

 	(ndlib.models.opinions.QVoterModel.QVoterModel method)

 	(ndlib.models.opinions.SznajdModel.SznajdModel method)

 	(ndlib.models.opinions.VoterModel.VoterModel method)

 	(ndlib.viz.mpl.DiffusionPrevalence.DiffusionPrevalence method)

 	(ndlib.viz.mpl.DiffusionTrend.DiffusionTrend method)

 	(ndlib.viz.mpl.PrevalenceComparison.DiffusionPrevalenceComparison method)

 	(ndlib.viz.mpl.TrendComparison.DiffusionTrendComparison method)

A

 	
 	add_edge_configuration() (ndlib.models.ModelConfig.Configuration method)

 	add_edge_set_configuration() (ndlib.models.ModelConfig.Configuration method)

 	add_model_initial_configuration() (ndlib.models.ModelConfig.Configuration method)

 	
 	add_model_parameter() (ndlib.models.ModelConfig.Configuration method)

 	add_node_configuration() (ndlib.models.ModelConfig.Configuration method)

 	add_node_set_configuration() (ndlib.models.ModelConfig.Configuration method)

C

 	
 	CognitiveOpDynModel (class in ndlib.models.opinions.CognitiveOpDynModel)

 	
 	Configuration (class in ndlib.models.ModelConfig)

D

 	
 	DiffusionModel (class in ndlib.models.DiffusionModel)

 	DiffusionPlot (class in ndlib.viz.mpl.DiffusionViz)

 	DiffusionPrevalence (class in ndlib.viz.mpl.DiffusionPrevalence)

 	DiffusionPrevalenceComparison (class in ndlib.viz.mpl.PrevalenceComparison)

 	DiffusionTrend (class in ndlib.viz.mpl.DiffusionTrend)

 	DiffusionTrendComparison (class in ndlib.viz.mpl.TrendComparison)

 	
 	DynKerteszThresholdModel (class in ndlib.models.dynamic.DynKerteszThresholdModel)

 	DynProfileModel (class in ndlib.models.dynamic.DynProfileModel)

 	DynProfileThresholdModel (class in ndlib.models.dynamic.DynProfileThresholdModel)

 	DynSIModel (class in ndlib.models.dynamic.DynSIModel)

 	DynSIRModel (class in ndlib.models.dynamic.DynSIRModel)

 	DynSISModel (class in ndlib.models.dynamic.DynSISModel)

E

 	
 	execute_iterations() (ndlib.models.dynamic.DynKerteszThresholdModel.DynKerteszThresholdModel method)

 	(ndlib.models.dynamic.DynProfileModel.DynProfileModel method)

 	(ndlib.models.dynamic.DynProfileThresholdModel.DynProfileThresholdModel method)

 	(ndlib.models.dynamic.DynSIModel.DynSIModel method)

 	(ndlib.models.dynamic.DynSIRModel.DynSIRModel method)

 	(ndlib.models.dynamic.DynSISModel.DynSISModel method)

 	
 	execute_snapshots() (ndlib.models.dynamic.DynKerteszThresholdModel.DynKerteszThresholdModel method)

 	(ndlib.models.dynamic.DynProfileModel.DynProfileModel method)

 	(ndlib.models.dynamic.DynProfileThresholdModel.DynProfileThresholdModel method)

 	(ndlib.models.dynamic.DynSIModel.DynSIModel method)

 	(ndlib.models.dynamic.DynSIRModel.DynSIRModel method)

 	(ndlib.models.dynamic.DynSISModel.DynSISModel method)

G

 	
 	GeneralisedThresholdModel (class in ndlib.models.epidemics.GeneralisedThresholdModel)

 	get_info() (ndlib.models.dynamic.DynKerteszThresholdModel.DynKerteszThresholdModel method)

 	(ndlib.models.dynamic.DynProfileModel.DynProfileModel method)

 	(ndlib.models.dynamic.DynProfileThresholdModel.DynProfileThresholdModel method)

 	(ndlib.models.dynamic.DynSIModel.DynSIModel method)

 	(ndlib.models.dynamic.DynSIRModel.DynSIRModel method)

 	(ndlib.models.dynamic.DynSISModel.DynSISModel method)

 	(ndlib.models.epidemics.GeneralisedThresholdModel.GeneralisedThresholdModel method)

 	(ndlib.models.epidemics.IndependentCascadesModel.IndependentCascadesModel method)

 	(ndlib.models.epidemics.KerteszThresholdModel.KerteszThresholdModel method)

 	(ndlib.models.epidemics.ProfileModel.ProfileModel method)

 	(ndlib.models.epidemics.ProfileThresholdModel.ProfileThresholdModel method)

 	(ndlib.models.epidemics.SEIRModel.SEIRModel method)

 	(ndlib.models.epidemics.SEISModel.SEISModel method)

 	(ndlib.models.epidemics.SIModel.SIModel method)

 	(ndlib.models.epidemics.SIRModel.SIRModel method)

 	(ndlib.models.epidemics.SISModel.SISModel method)

 	(ndlib.models.epidemics.SWIRModel.SWIRModel method)

 	(ndlib.models.epidemics.ThresholdModel.ThresholdModel method)

 	(ndlib.models.opinions.CognitiveOpDynModel.CognitiveOpDynModel method)

 	(ndlib.models.opinions.MajorityRuleModel.MajorityRuleModel method)

 	(ndlib.models.opinions.QVoterModel.QVoterModel method)

 	(ndlib.models.opinions.SznajdModel.SznajdModel method)

 	(ndlib.models.opinions.VoterModel.VoterModel method)

 	
 	get_status_map() (ndlib.models.dynamic.DynKerteszThresholdModel.DynKerteszThresholdModel method)

 	(ndlib.models.dynamic.DynProfileModel.DynProfileModel method)

 	(ndlib.models.dynamic.DynProfileThresholdModel.DynProfileThresholdModel method)

 	(ndlib.models.dynamic.DynSIModel.DynSIModel method)

 	(ndlib.models.dynamic.DynSIRModel.DynSIRModel method)

 	(ndlib.models.dynamic.DynSISModel.DynSISModel method)

 	(ndlib.models.epidemics.GeneralisedThresholdModel.GeneralisedThresholdModel method)

 	(ndlib.models.epidemics.IndependentCascadesModel.IndependentCascadesModel method)

 	(ndlib.models.epidemics.KerteszThresholdModel.KerteszThresholdModel method)

 	(ndlib.models.epidemics.ProfileModel.ProfileModel method)

 	(ndlib.models.epidemics.ProfileThresholdModel.ProfileThresholdModel method)

 	(ndlib.models.epidemics.SEIRModel.SEIRModel method)

 	(ndlib.models.epidemics.SEISModel.SEISModel method)

 	(ndlib.models.epidemics.SIModel.SIModel method)

 	(ndlib.models.epidemics.SIRModel.SIRModel method)

 	(ndlib.models.epidemics.SISModel.SISModel method)

 	(ndlib.models.epidemics.SWIRModel.SWIRModel method)

 	(ndlib.models.epidemics.ThresholdModel.ThresholdModel method)

 	(ndlib.models.opinions.CognitiveOpDynModel.CognitiveOpDynModel method)

 	(ndlib.models.opinions.MajorityRuleModel.MajorityRuleModel method)

 	(ndlib.models.opinions.QVoterModel.QVoterModel method)

 	(ndlib.models.opinions.SznajdModel.SznajdModel method)

 	(ndlib.models.opinions.VoterModel.VoterModel method)

I

 	
 	IndependentCascadesModel (class in ndlib.models.epidemics.IndependentCascadesModel)

 	iteration() (ndlib.models.DiffusionModel.DiffusionModel method)

 	(ndlib.models.dynamic.DynKerteszThresholdModel.DynKerteszThresholdModel method)

 	(ndlib.models.dynamic.DynProfileModel.DynProfileModel method)

 	(ndlib.models.dynamic.DynProfileThresholdModel.DynProfileThresholdModel method)

 	(ndlib.models.dynamic.DynSIModel.DynSIModel method)

 	(ndlib.models.dynamic.DynSIRModel.DynSIRModel method)

 	(ndlib.models.dynamic.DynSISModel.DynSISModel method)

 	(ndlib.models.epidemics.GeneralisedThresholdModel.GeneralisedThresholdModel method)

 	(ndlib.models.epidemics.IndependentCascadesModel.IndependentCascadesModel method)

 	(ndlib.models.epidemics.KerteszThresholdModel.KerteszThresholdModel method)

 	(ndlib.models.epidemics.ProfileModel.ProfileModel method)

 	(ndlib.models.epidemics.ProfileThresholdModel.ProfileThresholdModel method)

 	(ndlib.models.epidemics.SEIRModel.SEIRModel method)

 	(ndlib.models.epidemics.SEISModel.SEISModel method)

 	(ndlib.models.epidemics.SIModel.SIModel method)

 	(ndlib.models.epidemics.SIRModel.SIRModel method)

 	(ndlib.models.epidemics.SISModel.SISModel method)

 	(ndlib.models.epidemics.ThresholdModel.ThresholdModel method)

 	(ndlib.models.opinions.CognitiveOpDynModel.CognitiveOpDynModel method)

 	(ndlib.models.opinions.MajorityRuleModel.MajorityRuleModel method)

 	(ndlib.models.opinions.QVoterModel.QVoterModel method)

 	(ndlib.models.opinions.SznajdModel.SznajdModel method)

 	(ndlib.models.opinions.VoterModel.VoterModel method)

 	
 	iteration_bunch() (ndlib.models.epidemics.GeneralisedThresholdModel.GeneralisedThresholdModel method)

 	(ndlib.models.epidemics.IndependentCascadesModel.IndependentCascadesModel method)

 	(ndlib.models.epidemics.KerteszThresholdModel.KerteszThresholdModel method)

 	(ndlib.models.epidemics.ProfileModel.ProfileModel method)

 	(ndlib.models.epidemics.ProfileThresholdModel.ProfileThresholdModel method)

 	(ndlib.models.epidemics.SEIRModel.SEIRModel method)

 	(ndlib.models.epidemics.SEISModel.SEISModel method)

 	(ndlib.models.epidemics.SIModel.SIModel method)

 	(ndlib.models.epidemics.SIRModel.SIRModel method)

 	(ndlib.models.epidemics.SISModel.SISModel method)

 	(ndlib.models.epidemics.SWIRModel.SWIRModel method)

 	(ndlib.models.epidemics.ThresholdModel.ThresholdModel method)

 	(ndlib.models.opinions.CognitiveOpDynModel.CognitiveOpDynModel method)

 	(ndlib.models.opinions.MajorityRuleModel.MajorityRuleModel method)

 	(ndlib.models.opinions.QVoterModel.QVoterModel method)

 	(ndlib.models.opinions.SznajdModel.SznajdModel method)

 	(ndlib.models.opinions.VoterModel.VoterModel method)

K

 	
 	KerteszThresholdModel (class in ndlib.models.epidemics.KerteszThresholdModel)

M

 	
 	MajorityRuleModel (class in ndlib.models.opinions.MajorityRuleModel)

 	
 	multi_runs() (in module ndlib.utils)

P

 	
 	plot() (ndlib.viz.mpl.DiffusionPrevalence.DiffusionPrevalence method)

 	(ndlib.viz.mpl.DiffusionTrend.DiffusionTrend method)

 	(ndlib.viz.mpl.PrevalenceComparison.DiffusionPrevalenceComparison method)

 	(ndlib.viz.mpl.TrendComparison.DiffusionTrendComparison method)

 	
 	ProfileModel (class in ndlib.models.epidemics.ProfileModel)

 	ProfileThresholdModel (class in ndlib.models.epidemics.ProfileThresholdModel)

Q

 	
 	QVoterModel (class in ndlib.models.opinions.QVoterModel)

R

 	
 	reset() (ndlib.models.dynamic.DynKerteszThresholdModel.DynKerteszThresholdMod